Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning1. 摘要2. 存在的问题以及贡献3.方法3.4 优化4. 实验结果
最近,图协同过滤方法被提出作为一种有效的推荐方法,它可以通过建模用户-项目交互图来捕获用户对项目的偏好。尽管有效,但这些方法在实际场景中存在数据稀疏问题。为了减少数据稀疏性的影响,在图形协同过滤中采用对比学习来提高性能。然而,这些方法通常是通过随机抽样来构建对比对的,忽视了用户(或项目)之间的相邻关系,未能充分挖掘对比学习的潜力来进行推荐。为了解决上述问题,我们提出了一种新的对比学习方法,称为邻域丰富的对比学习,称为NCL,它明确地将潜在的邻域合并为对比对。