数据科学的三个重要经验
三点经验:模型评价方法是关键,特征提取是根本,模型选择而非数据集规模最费时间。文章指出,处理上万维的特征和几十万的样本的现代算法是愚蠢的,而特征工程理论还不完善,更像是一门艺术。这是数据科学大行其道的时代。各类课程、博客、培训学校如雨后春笋般出现。然而,每次我浏览这些学习资料时,我发现它们过于强调一些具体的算法。理解逻辑回归或者深度学习的原理当然很酷,可是一旦从事数据相关工作,你会发现还有