降维算法1.概述PCA与SVD
1.概述降维算法中的“降维”,指的是:降低特征矩阵中特征的数量。降维的目的是:让算法运算更快,效果更好,还有另一种需求:数据可视化。SVD和PCA(主成分分析)是矩阵分解算法中的入门算法。PCA与SVD我们希望能够找出一种方法来帮助我们衡量特征上所带的信息,让我们在姜维的过程中,即能够减少特征的数量,又能够保留大部分的信息——将那些带有重复信息的特征合并,并删除那些带有无效信息的特征等—...