数据算法 --hadoop/spark数据处理技巧 --(13.朴素贝叶斯 14.情感分析)
十三。朴素贝叶斯 朴素贝叶斯是一个线性分类器。处理数值数据时,最好使用聚类技术(eg:K均值)和k-近邻方法,不过对于名字、符号、电子邮件和文本的分类,则最好使用概率方法,朴素贝叶斯就可以。在某些情况下,NBC也可以用来对数值数据分类。 对于数值数据的分类,比如(连续属性,身高,体重,脚长),建议采用采用高斯分布,令x是一个连续属性。首先,按类对数据分段,然后计算各个类中的x...