【深度学习原理第1篇】前馈神经网络,感知机,BP神经网络
前馈神经网络(FNN)前馈神经网路是一种单向多层的网络结构,信息从输入层开始,逐层向一个方向传递,即单向传递,一直到输出层结束。前馈的意思就是指传播方向指的是前向。前馈神经网络由三部分组成:输入层(第0层),输出层(最后一层),中间部分称为隐藏层,隐藏层可以是一层,也可以是多层 。FNN如下图所示,其中圆圈是神经元。学习神经网络前向传播与反向传播推导过程必须了解,这是许多网络的基础,推荐下面的up主视频,用案例来讲解底层传播与机理,并做出了推导,跟着推一遍,理解会更深刻,不然后面学习就可能一知半