爱撒娇钢笔

文章
4
资源
0
加入时间
2年10月17天

乘法逆元3种方法总结[最全]

若ax≡1 mod f, 则称a关于1模f的乘法逆元为x。也可表示为ax≡1(mod f)。当a与f互素时,a关于模f的乘法逆元有解。如果不互素,则无解,但是有其他方法实现相同功能。如果f为素数,则从1到f-1的任意数都与f互素,即在1到f-1之间都恰好有一个关于模f的乘法逆元本文讲详细解释:什么是逆元,为什么要求逆元?扩展欧几里得算法讲解;求逆元的三种方法;了解基本知识后,我们来求逆元:求逆元分为两类:==**2.a p 互质时:**===1.a p 不互质时逆元无解==可用此公式实现相同功能

【java.lang.ref】当WeakReference的referent重写了finalize方法时会发生什么问题测试代码分析结论

问题question:当WeakReference的referent重写了finalize方法时会发生什么?测试代码JVM中是存在这样的情况的:一个Java对象,重写了finalize方法,在使用的过程中又被SoftReference或WeakReference或PhantomReference封装,这时候JVM是怎么处理该referent的?软引用受LRU策略的影响,不太好探究。直接使用虚引用在JVM中的处理流程和弱引用一致,但还需要提供一个关系不大的ReferenceQueue,所.

Vue.js——监听组件的生命周期

有父组件Parent和子组件Child,如果父组件监听到子组件挂载mounted就做一些逻辑处理,常规的写法可能如下:// Parent.vue<Child @mounted="doSomething"/>// Child.vuemounted() { this.$emit("mounted");}这里提供一种特别简单的方式,子组件不需要任何处理,只需要在父组...

cdr制作漂亮的浮雕文字效果

今天小编为大家分享cdr制作漂亮的浮雕文字效果方法,教程制作出来的文字很漂亮,而且方法很简单,推荐过来,一起来学习吧! 方法 步骤 打