SVM简介及sklearn参数1.SVM简介SVM方法建立在统计学VC维和结构风险最小化原则上,既可以用于分类(二/多分类)、也可用于回归和异常值检测。SVM具有良好的鲁棒性,对未知数据拥有很强的泛化能力,特别是在数据量较少的情况下,相较其他传统机器学习算法具有更优的性能。使用SVM作为模型时,通常采用如下流程:对样本数据进行归一化应用核函数对样本进行映射(最常采用和核函数是RBF和Linear,在样本线性可分时,Linear效果要比RBF好)用cross-validation和grid-sea
机器学习
2024-01-04
31 点赞
0 评论
46 浏览