我是靠谱客的博主 飞快小刺猬,最近开发中收集的这篇文章主要介绍【TF2.0-CNN】使用ImageDataGenerator生成训练数据,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

如果你还没有下载训练数据,请参考这里。

TF2.0提供了极简洁的API用来生成训练数据,你只要指定图片所在的目录。

【例】马与人的分类

from tensorflow.keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
from tensorflow.keras.optimizers import RMSprop


train_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(
        '/tmp/horse-or-human/',
        target_size=(300, 300),
        batch_size=128,
        class_mode='binary')


model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(1, activation='sigmoid')
])

model.summary()

model.compile(loss='binary_crossentropy',
              optimizer=RMSprop(lr=0.001),
              metrics=['acc'])

history = model.fit_generator(
      train_generator,
      steps_per_epoch=8,
      epochs=15,
      verbose=1)

【重点1】训练数据生成器:

train_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(
        '/tmp/horse-or-human/',
        target_size=(300, 300),
        batch_size=128,
        class_mode='binary')

这个生成器的重要参数是训练数据(即图片)的在的目录、目标尺寸(模型的输入)、批量尺寸(每次训练多少张图片)、分类模式(二分类还是多分类)

【重点2】fit_generator代替fit

history = model.fit_generator(
      train_generator,
      steps_per_epoch=8,
      epochs=15,
      verbose=1)

1.训练函数是fit_generator而不是fit

2.参数train_generator并非已经生成的数据,而是一个数据生成器(它能够产生训练数据,但它自己本身不是数据)

 

【例2】带验证集

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import RMSprop
import tensorflow as tf


train_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(
        '/tmp/horse-or-human/',
        target_size=(300, 300),
        batch_size=128,
        class_mode='binary')

validation_datagen = ImageDataGenerator(rescale=1/255)
validation_generator = validation_datagen.flow_from_directory(
        '/tmp/validation-horse-or-human/',
        target_size=(300, 300),
        batch_size=32,
        class_mode='binary')

model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(1, activation='sigmoid')
])

model.summary()

model.compile(loss='binary_crossentropy',
              optimizer=RMSprop(lr=0.001),
              metrics=['acc'])

history = model.fit_generator(
      train_generator,
      steps_per_epoch=8,
      epochs=15,
      verbose=1,
      validation_data = validation_generator,
      validation_steps=8)

【重点1】比例1多了一个数据生成器

validation_datagen = ImageDataGenerator(rescale=1/255)
validation_generator = validation_datagen.flow_from_directory(
        '/tmp/validation-horse-or-human/',
        target_size=(300, 300),
        batch_size=32,
        class_mode='binary')

这个生成器的作用是产生验证数据

【重点2】fit_generator的参数多了验证数据生成器

history = model.fit_generator(
      train_generator,
      steps_per_epoch=8,
      epochs=15,
      verbose=1,
      validation_data = validation_generator,
      validation_steps=8)

这个参数的作用是生成验证数据,所生成的数据将在每一轮训练结束后对模型进行验证。

【输出】:

红框的信息是验证数据的损失和准确率。

 

本文重点是生成训练数据,可参考Keras官网API:https://keras.io/preprocessing/image/

 

最后

以上就是飞快小刺猬为你收集整理的【TF2.0-CNN】使用ImageDataGenerator生成训练数据的全部内容,希望文章能够帮你解决【TF2.0-CNN】使用ImageDataGenerator生成训练数据所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(42)

评论列表共有 0 条评论

立即
投稿
返回
顶部