概述
如果你还没有下载训练数据,请参考这里。
TF2.0提供了极简洁的API用来生成训练数据,你只要指定图片所在的目录。
【例】马与人的分类
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
from tensorflow.keras.optimizers import RMSprop
train_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(
'/tmp/horse-or-human/',
target_size=(300, 300),
batch_size=128,
class_mode='binary')
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.summary()
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(lr=0.001),
metrics=['acc'])
history = model.fit_generator(
train_generator,
steps_per_epoch=8,
epochs=15,
verbose=1)
【重点1】训练数据生成器:
train_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(
'/tmp/horse-or-human/',
target_size=(300, 300),
batch_size=128,
class_mode='binary')
这个生成器的重要参数是训练数据(即图片)的在的目录、目标尺寸(模型的输入)、批量尺寸(每次训练多少张图片)、分类模式(二分类还是多分类)
【重点2】fit_generator代替fit
history = model.fit_generator(
train_generator,
steps_per_epoch=8,
epochs=15,
verbose=1)
1.训练函数是fit_generator而不是fit
2.参数train_generator并非已经生成的数据,而是一个数据生成器(它能够产生训练数据,但它自己本身不是数据)
【例2】带验证集
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import RMSprop
import tensorflow as tf
train_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(
'/tmp/horse-or-human/',
target_size=(300, 300),
batch_size=128,
class_mode='binary')
validation_datagen = ImageDataGenerator(rescale=1/255)
validation_generator = validation_datagen.flow_from_directory(
'/tmp/validation-horse-or-human/',
target_size=(300, 300),
batch_size=32,
class_mode='binary')
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.summary()
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(lr=0.001),
metrics=['acc'])
history = model.fit_generator(
train_generator,
steps_per_epoch=8,
epochs=15,
verbose=1,
validation_data = validation_generator,
validation_steps=8)
【重点1】比例1多了一个数据生成器
validation_datagen = ImageDataGenerator(rescale=1/255)
validation_generator = validation_datagen.flow_from_directory(
'/tmp/validation-horse-or-human/',
target_size=(300, 300),
batch_size=32,
class_mode='binary')
这个生成器的作用是产生验证数据
【重点2】fit_generator的参数多了验证数据生成器
history = model.fit_generator(
train_generator,
steps_per_epoch=8,
epochs=15,
verbose=1,
validation_data = validation_generator,
validation_steps=8)
这个参数的作用是生成验证数据,所生成的数据将在每一轮训练结束后对模型进行验证。
【输出】:
红框的信息是验证数据的损失和准确率。
本文重点是生成训练数据,可参考Keras官网API:https://keras.io/preprocessing/image/
最后
以上就是飞快小刺猬为你收集整理的【TF2.0-CNN】使用ImageDataGenerator生成训练数据的全部内容,希望文章能够帮你解决【TF2.0-CNN】使用ImageDataGenerator生成训练数据所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复