概述
对于内部和外部矢量产品,矢量矩阵乘法等方面的内容,在使用多个核心(在Intel硬件上),可以使用多少核心?
如果有必要,我很乐意重建numpy,但在这一点上,我正在考虑如何加快速度,而不改变我的代码.
为了参考,我的show_config()如下,我从来没有观察到使用多个核心的numpy:
atlas_threads_info:
libraries = ['lapack', 'ptf77blas', 'ptcblas', 'atlas']
library_dirs = ['/usr/local/atlas-3.9.16/lib']
language = f77
include_dirs = ['/usr/local/atlas-3.9.16/include']
blas_opt_info:
libraries = ['ptf77blas', 'ptcblas', 'atlas']
library_dirs = ['/usr/local/atlas-3.9.16/lib']
define_macros = [('ATLAS_INFO', '"\"3.9.16\""')]
language = c
include_dirs = ['/usr/local/atlas-3.9.16/include']
atlas_blas_threads_info:
libraries = ['ptf77blas', 'ptcblas', 'atlas']
library_dirs = ['/usr/local/atlas-3.9.16/lib']
language = c
include_dirs = ['/usr/local/atlas-3.9.16/include']
lapack_opt_info:
libraries = ['lapack', 'ptf77blas', 'ptcblas', 'atlas']
library_dirs = ['/usr/local/atlas-3.9.16/lib']
define_macros = [('ATLAS_INFO', '"\"3.9.16\""')]
language = f77
include_dirs = ['/usr/local/atlas-3.9.16/include']
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
mkl_info:
NOT AVAILABLE
最后
以上就是虚心冬日为你收集整理的python配置核_python – numpy在多核硬件上的全部内容,希望文章能够帮你解决python配置核_python – numpy在多核硬件上所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复