我是靠谱客的博主 老实芝麻,最近开发中收集的这篇文章主要介绍transformer,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

CLASS torch.nn.Transformer(d_model=512, nhead=8, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
activation=<function relu>, custom_encoder=None, custom_decoder=None,
layer_norm_eps=1e-05, batch_first=False, norm_first=False, device=None,
dtype=None)

Parameters

  • d_model – the number of expected features in the encoder/decoder inputs (default=512).
  • nhead – the number of heads in the multiheadattention models (default=8).
  • num_encoder_layers – the number of sub-encoder-layers in the encoder (default=6).
  • num_decoder_layers – the number of sub-decoder-layers in the decoder (default=6).
  • dim_feedforward – the dimension of the feedforward network model (default=2048).
  • dropout – the dropout value (default=0.1).
  • activation – the activation function of encoder/decoder intermediate layer, can be a string (“relu” or “gelu”) or a unary callable. Default: relu
  • custom_encoder – custom encoder (default=None).
  • custom_decoder – custom decoder (default=None).
  • layer_norm_eps – the eps value in layer normalization components (default=1e-5).
  • batch_first – If True, then the input and output tensors are provided as (batch, seq, feature). Default: False (seq, batch, feature).
  • norm_first – if True, encoder and decoder layers will perform LayerNorms before other attention and feedforward operations, otherwise after. Default: False (after).
forward(src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None)

Parameters

  • src – the sequence to the encoder (required).
  • tgt – the sequence to the decoder (required).
  • src_mask – the additive mask for the src sequence (optional).
  • tgt_mask – the additive mask for the tgt sequence (optional).
  • memory_mask – the additive mask for the encoder output (optional).
  • src_key_padding_mask – the ByteTensor mask for src keys per batch (optional).
  • tgt_key_padding_mask – the ByteTensor mask for tgt keys per batch (optional).
  • memory_key_padding_mask – the ByteTensor mask for memory keys per batch (optional).

Shape

  • src: (S,E) for unbatched input, (S,N,E) if batch_first=False or (N,S,E) if batch_first=True.
  • tgt:(T,E) for unbatched input, (T,N,E) if batch_first=False or (N,T,E) if batch_first=True.
  • src_mask: (S,S) or (N⋅num_heads,S,S).
  • tgt_mask: (T,T) or (N⋅num_heads,T,T).
  • memory_mask: (T,S).
  • src_key_padding_mask: (S) for unbatched input otherwise (N,S).
  • tgt_key_padding_mask: (T) for unbatched input otherwise (N,T).
  • memory_key_padding_mask:(S) for unbatched input otherwise (N,S).
  • output: (T,E) for unbatched input, (T,N,E) if batch_first=False or (N,T,E) if batch_first=True.

最后

以上就是老实芝麻为你收集整理的transformer的全部内容,希望文章能够帮你解决transformer所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(51)

评论列表共有 0 条评论

立即
投稿
返回
顶部