我是靠谱客的博主 轻松蜜粉,这篇文章主要介绍Android SurfaceFlinger服务(一) ----- BufferQueue分析,现在分享给大家,希望可以做个参考。

生产者和消费者模型是编程中运用比较广泛的模型。在SurfaceFlinger图像绘制、合成、显示也用到了该模型。利用该模型合理的管理图像缓冲区buffer。让整个android系统从绘制到显示的过程有条不紊的进行。

BufferQueue图像缓冲管理者。其成员函数createBufferQueue创建一个缓冲区队列。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer, sp<IGraphicBufferConsumer>* outConsumer, const sp<IGraphicBufferAlloc>& allocator) { LOG_ALWAYS_FATAL_IF(outProducer == NULL, "BufferQueue: outProducer must not be NULL"); LOG_ALWAYS_FATAL_IF(outConsumer == NULL, "BufferQueue: outConsumer must not be NULL"); sp<BufferQueueCore> core(new BufferQueueCore(allocator)); LOG_ALWAYS_FATAL_IF(core == NULL, "BufferQueue: failed to create BufferQueueCore"); sp<IGraphicBufferProducer> producer(new BufferQueueProducer(core)); LOG_ALWAYS_FATAL_IF(producer == NULL, "BufferQueue: failed to create BufferQueueProducer"); sp<IGraphicBufferConsumer> consumer(new BufferQueueConsumer(core)); LOG_ALWAYS_FATAL_IF(consumer == NULL, "BufferQueue: failed to create BufferQueueConsumer"); *outProducer = producer; *outConsumer = consumer; }
  • outProducer outConsumer为输出参数,输出对应的生产者接口,和消费者接口
  • allocator为输入参数,输入一个图像缓冲区内存分配接口,用于内存的申请
  • 首先通用allocator构造一个BufferQueueCore对象,然后在用该对象构造生产者对象(BufferQueueProducer)和消费者对象(BufferQueueConsumer)
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
class BufferQueueCore : public virtual RefBase { friend class BufferQueueProducer; friend class BufferQueueConsumer; public: // Used as a placeholder slot number when the value isn't pointing to an // existing buffer. enum { INVALID_BUFFER_SLOT = BufferItem::INVALID_BUFFER_SLOT }; // We reserve two slots in order to guarantee that the producer and // consumer can run asynchronously. enum { MAX_MAX_ACQUIRED_BUFFERS = BufferQueueDefs::NUM_BUFFER_SLOTS - 2 }; // The default API number used to indicate that no producer is connected enum { NO_CONNECTED_API = 0 }; typedef Vector<BufferItem> Fifo; // BufferQueueCore manages a pool of gralloc memory slots to be used by // producers and consumers. allocator is used to allocate all the needed // gralloc buffers. BufferQueueCore(const sp<IGraphicBufferAlloc>& allocator = NULL); virtual ~BufferQueueCore(); private: // Dump our state in a string void dump(String8& result, const char* prefix) const; // getMinUndequeuedBufferCountLocked returns the minimum number of buffers // that must remain in a state other than DEQUEUED. The async parameter // tells whether we're in asynchronous mode. int getMinUndequeuedBufferCountLocked(bool async) const; // getMinMaxBufferCountLocked returns the minimum number of buffers allowed // given the current BufferQueue state. The async parameter tells whether // we're in asynchonous mode. int getMinMaxBufferCountLocked(bool async) const; // getMaxBufferCountLocked returns the maximum number of buffers that can be // allocated at once. This value depends on the following member variables: // // mDequeueBufferCannotBlock // mMaxAcquiredBufferCount // mDefaultMaxBufferCount // mOverrideMaxBufferCount // async parameter // // Any time one of these member variables is changed while a producer is // connected, mDequeueCondition must be broadcast. int getMaxBufferCountLocked(bool async) const; // setDefaultMaxBufferCountLocked sets the maximum number of buffer slots // that will be used if the producer does not override the buffer slot // count. The count must be between 2 and NUM_BUFFER_SLOTS, inclusive. The // initial default is 2. status_t setDefaultMaxBufferCountLocked(int count); // freeBufferLocked frees the GraphicBuffer and sync resources for the // given slot. void freeBufferLocked(int slot); // freeAllBuffersLocked frees the GraphicBuffer and sync resources for // all slots. void freeAllBuffersLocked(); // stillTracking returns true iff the buffer item is still being tracked // in one of the slots. bool stillTracking(const BufferItem* item) const; // waitWhileAllocatingLocked blocks until mIsAllocating is false. void waitWhileAllocatingLocked() const; // validateConsistencyLocked ensures that the free lists are in sync with // the information stored in mSlots void validateConsistencyLocked() const; // mAllocator is the connection to SurfaceFlinger that is used to allocate // new GraphicBuffer objects. sp<IGraphicBufferAlloc> mAllocator; // mMutex is the mutex used to prevent concurrent access to the member // variables of BufferQueueCore objects. It must be locked whenever any // member variable is accessed. mutable Mutex mMutex; // mIsAbandoned indicates that the BufferQueue will no longer be used to // consume image buffers pushed to it using the IGraphicBufferProducer // interface. It is initialized to false, and set to true in the // consumerDisconnect method. A BufferQueue that is abandoned will return // the NO_INIT error from all IGraphicBufferProducer methods capable of // returning an error. bool mIsAbandoned; // mConsumerControlledByApp indicates whether the connected consumer is // controlled by the application. bool mConsumerControlledByApp; // mConsumerName is a string used to identify the BufferQueue in log // messages. It is set by the IGraphicBufferConsumer::setConsumerName // method. String8 mConsumerName; // mConsumerListener is used to notify the connected consumer of // asynchronous events that it may wish to react to. It is initially // set to NULL and is written by consumerConnect and consumerDisconnect. sp<IConsumerListener> mConsumerListener; // mConsumerUsageBits contains flags that the consumer wants for // GraphicBuffers. uint32_t mConsumerUsageBits; // mConnectedApi indicates the producer API that is currently connected // to this BufferQueue. It defaults to NO_CONNECTED_API, and gets updated // by the connect and disconnect methods. int mConnectedApi; // mConnectedProducerToken is used to set a binder death notification on // the producer. sp<IProducerListener> mConnectedProducerListener; // mSlots is an array of buffer slots that must be mirrored on the producer // side. This allows buffer ownership to be transferred between the producer // and consumer without sending a GraphicBuffer over Binder. The entire // array is initialized to NULL at construction time, and buffers are // allocated for a slot when requestBuffer is called with that slot's index. BufferQueueDefs::SlotsType mSlots; // mQueue is a FIFO of queued buffers used in synchronous mode. Fifo mQueue; // mFreeSlots contains all of the slots which are FREE and do not currently // have a buffer attached std::set<int> mFreeSlots; // mFreeBuffers contains all of the slots which are FREE and currently have // a buffer attached std::list<int> mFreeBuffers; // mOverrideMaxBufferCount is the limit on the number of buffers that will // be allocated at one time. This value is set by the producer by calling // setBufferCount. The default is 0, which means that the producer doesn't // care about the number of buffers in the pool. In that case, // mDefaultMaxBufferCount is used as the limit. int mOverrideMaxBufferCount; // mDequeueCondition is a condition variable used for dequeueBuffer in // synchronous mode. mutable Condition mDequeueCondition; // mUseAsyncBuffer indicates whether an extra buffer is used in async mode // to prevent dequeueBuffer from blocking. bool mUseAsyncBuffer; // mDequeueBufferCannotBlock indicates whether dequeueBuffer is allowed to // block. This flag is set during connect when both the producer and // consumer are controlled by the application. bool mDequeueBufferCannotBlock; // mDefaultBufferFormat can be set so it will override the buffer format // when it isn't specified in dequeueBuffer. PixelFormat mDefaultBufferFormat; // mDefaultWidth holds the default width of allocated buffers. It is used // in dequeueBuffer if a width and height of 0 are specified. uint32_t mDefaultWidth; // mDefaultHeight holds the default height of allocated buffers. It is used // in dequeueBuffer if a width and height of 0 are specified. uint32_t mDefaultHeight; // mDefaultBufferDataSpace holds the default dataSpace of queued buffers. // It is used in queueBuffer if a dataspace of 0 (HAL_DATASPACE_UNKNOWN) // is specified. android_dataspace mDefaultBufferDataSpace; // mDefaultMaxBufferCount is the default limit on the number of buffers that // will be allocated at one time. This default limit is set by the consumer. // The limit (as opposed to the default limit) may be overriden by the // producer. int mDefaultMaxBufferCount; // mMaxAcquiredBufferCount is the number of buffers that the consumer may // acquire at one time. It defaults to 1, and can be changed by the consumer // via setMaxAcquiredBufferCount, but this may only be done while no // producer is connected to the BufferQueue. This value is used to derive // the value returned for the MIN_UNDEQUEUED_BUFFERS query to the producer. int mMaxAcquiredBufferCount; // mBufferHasBeenQueued is true once a buffer has been queued. It is reset // when something causes all buffers to be freed (e.g., changing the buffer // count). bool mBufferHasBeenQueued; // mFrameCounter is the free running counter, incremented on every // successful queueBuffer call and buffer allocation. uint64_t mFrameCounter; // mTransformHint is used to optimize for screen rotations. uint32_t mTransformHint; // mSidebandStream is a handle to the sideband buffer stream, if any sp<NativeHandle> mSidebandStream; // mIsAllocating indicates whether a producer is currently trying to allocate buffers (which // releases mMutex while doing the allocation proper). Producers should not modify any of the // FREE slots while this is true. mIsAllocatingCondition is signaled when this value changes to // false. bool mIsAllocating; // mIsAllocatingCondition is a condition variable used by producers to wait until mIsAllocating // becomes false. mutable Condition mIsAllocatingCondition; // mAllowAllocation determines whether dequeueBuffer is allowed to allocate // new buffers bool mAllowAllocation; // mBufferAge tracks the age of the contents of the most recently dequeued // buffer as the number of frames that have elapsed since it was last queued uint64_t mBufferAge; // mGenerationNumber stores the current generation number of the attached // producer. Any attempt to attach a buffer with a different generation // number will fail. uint32_t mGenerationNumber; }; // class BufferQueueCore
  • 这个类是一个比较关键的类
  • 成员变量mSlots管理着队列中各个缓冲区的状态
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
struct BufferSlot { BufferSlot() : mEglDisplay(EGL_NO_DISPLAY), mBufferState(BufferSlot::FREE), mRequestBufferCalled(false), mFrameNumber(0), mEglFence(EGL_NO_SYNC_KHR), mAcquireCalled(false), mNeedsCleanupOnRelease(false), mAttachedByConsumer(false) { } // mGraphicBuffer points to the buffer allocated for this slot or is NULL // if no buffer has been allocated. sp<GraphicBuffer> mGraphicBuffer; // mEglDisplay is the EGLDisplay used to create EGLSyncKHR objects. EGLDisplay mEglDisplay; // BufferState represents the different states in which a buffer slot // can be. All slots are initially FREE. enum BufferState { FREE = 0, DEQUEUED = 1, QUEUED = 2, ACQUIRED = 3 }; static const char* bufferStateName(BufferState state); // mBufferState is the current state of this buffer slot. BufferState mBufferState; // mRequestBufferCalled is used for validating that the producer did // call requestBuffer() when told to do so. Technically this is not // needed but useful for debugging and catching producer bugs. bool mRequestBufferCalled; // mFrameNumber is the number of the queued frame for this slot. This // is used to dequeue buffers in LRU order (useful because buffers // may be released before their release fence is signaled). uint64_t mFrameNumber; // mEglFence is the EGL sync object that must signal before the buffer // associated with this buffer slot may be dequeued. It is initialized // to EGL_NO_SYNC_KHR when the buffer is created and may be set to a // new sync object in releaseBuffer. (This is deprecated in favor of // mFence, below.) EGLSyncKHR mEglFence; // mFence is a fence which will signal when work initiated by the // previous owner of the buffer is finished. When the buffer is FREE, // the fence indicates when the consumer has finished reading // from the buffer, or when the producer has finished writing if it // called cancelBuffer after queueing some writes. When the buffer is // QUEUED, it indicates when the producer has finished filling the // buffer. When the buffer is DEQUEUED or ACQUIRED, the fence has been // passed to the consumer or producer along with ownership of the // buffer, and mFence is set to NO_FENCE. sp<Fence> mFence; // Indicates whether this buffer has been seen by a consumer yet bool mAcquireCalled; // Indicates whether this buffer needs to be cleaned up by the // consumer. This is set when a buffer in ACQUIRED state is freed. // It causes releaseBuffer to return STALE_BUFFER_SLOT. bool mNeedsCleanupOnRelease; // Indicates whether the buffer was attached on the consumer side. // If so, it needs to set the BUFFER_NEEDS_REALLOCATION flag when dequeued // to prevent the producer from using a stale cached buffer. bool mAttachedByConsumer; };
  • BufferState定义了缓冲区的五种状态
  • 该结构体描述了每个缓冲区的状态与属性

BufferQueue的生产步骤(生产者接口BufferQueueProducer):

  1. dequeueBuffer
  2. requestBuffer
  3. queueBuffer

BufferQueue消费步骤(消费者接口BufferQueueConsumer):

  1. acquireBuffer
  2. releaseBuffer

生产者在缓冲区填充完成后,调用queueBuffer方法将缓冲区加入队列,并且通知消费者。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
status_t BufferQueueProducer::queueBuffer(int slot, const QueueBufferInput &input, QueueBufferOutput *output) { ....... frameAvailableListener = mCore->mConsumerListener; ...... frameAvailableListener->onFrameAvailable(item); ...... }
  • 获取BufferQueueCore内的成员变量mConsumerListener(消费者监听接口)
  • 回调接口方法onFrameAvailable

那么问题又来了,mConsumerListener又是在哪里给设置的呢?

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
status_t BufferQueueConsumer::connect( const sp<IConsumerListener>& consumerListener, bool controlledByApp) { ATRACE_CALL(); if (consumerListener == NULL) { BQ_LOGE("connect(C): consumerListener may not be NULL"); return BAD_VALUE; } BQ_LOGV("connect(C): controlledByApp=%s", controlledByApp ? "true" : "false"); Mutex::Autolock lock(mCore->mMutex); if (mCore->mIsAbandoned) { BQ_LOGE("connect(C): BufferQueue has been abandoned"); return NO_INIT; } mCore->mConsumerListener = consumerListener; mCore->mConsumerControlledByApp = controlledByApp; return NO_ERROR; }
  • BufferQueueConsumer::connect函数中会传入consumerListener接口指针,并设置给mCore->mConsumerListener
  • 最终决定在哪消费就那BufferQueueConsumer接口调用connect函数时传入的接口对象类型

ConsumerBase消费者基类

该类是对图像缓冲区消费者接口的进一步封装,看看它的构造函数

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
ConsumerBase::ConsumerBase(const sp<IGraphicBufferConsumer>& bufferQueue, bool controlledByApp) : mAbandoned(false), mConsumer(bufferQueue) { // Choose a name using the PID and a process-unique ID. mName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId()); // Note that we can't create an sp<...>(this) in a ctor that will not keep a // reference once the ctor ends, as that would cause the refcount of 'this' // dropping to 0 at the end of the ctor. Since all we need is a wp<...> // that's what we create. wp<ConsumerListener> listener = static_cast<ConsumerListener*>(this); sp<IConsumerListener> proxy = new BufferQueue::ProxyConsumerListener(listener); status_t err = mConsumer->consumerConnect(proxy, controlledByApp); if (err != NO_ERROR) { CB_LOGE("ConsumerBase: error connecting to BufferQueue: %s (%d)", strerror(-err), err); } else { mConsumer->setConsumerName(mName); } }
  • 用该类的this指定构造一个消费者监听代码对象BufferQueue::ProxyConsumerListener
  • 调用消费者接口的consumerConnect函数连接服务端,并注册消费监听
复制代码
1
2
3
4
5
// frameworks/native/include/gui/BufferQueueConsumer.h virtual status_t consumerConnect(const sp<IConsumerListener>& consumer, bool controlledByApp) { return connect(consumer, controlledByApp); }
  • consumerConnect函数还是调用我们前面说的connect函数,那个数据到来回调就调用刚刚他建的BufferQueue::ProxyConsumerListener对象的onFrameAvailable函数
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
// frameworks/native/libs/gui/BufferQueue.cpp BufferQueue::ProxyConsumerListener::ProxyConsumerListener( const wp<ConsumerListener>& consumerListener): mConsumerListener(consumerListener) {} void BufferQueue::ProxyConsumerListener::onFrameAvailable( const BufferItem& item) { sp<ConsumerListener> listener(mConsumerListener.promote()); if (listener != NULL) { listener->onFrameAvailable(item); } }
  • ProxyConsumerListener构造函数中,将参数consumerListener赋值给mConsumerListener。(既前面说的ConsumerBase对象)
  • 在onFrameAvailable函数中调用mConsumerListener的onFrameAvailable函数

由以上分析,可以得出一个结论ConsumerBase类在其构造函数中会注册消费监听,且其回调函数为它的成员函数onFrameAvailable,那么在来看看ConsumerBase::onFrameAvailable函数

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
void ConsumerBase::onFrameAvailable(const BufferItem& item) { CB_LOGV("onFrameAvailable"); sp<FrameAvailableListener> listener; { // scope for the lock Mutex::Autolock lock(mMutex); listener = mFrameAvailableListener.promote(); } if (listener != NULL) { CB_LOGV("actually calling onFrameAvailable"); listener->onFrameAvailable(item); } } void ConsumerBase::setFrameAvailableListener( const wp<FrameAvailableListener>& listener) { CB_LOGV("setFrameAvailableListener"); Mutex::Autolock lock(mMutex); mFrameAvailableListener = listener; }
  • ConsumerBase::onFrameAvailable函数最终调用成员变量mFrameAvailableListener的onFrameAvailable函数。
  • 其成员函数 ConsumerBase::setFrameAvailableListener给mFrameAvailableListener赋值
  • 所以,如果图像缓冲区消费者类是继承于ConsumerBase时,要看消费者数据回调最终跑在哪里就要查看setFrameAvailableListener设置的监听器

转载于:https://www.cnblogs.com/qzhang1535/p/8657683.html

最后

以上就是轻松蜜粉最近收集整理的关于Android SurfaceFlinger服务(一) ----- BufferQueue分析的全部内容,更多相关Android内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(84)

评论列表共有 0 条评论

立即
投稿
返回
顶部