概述
function [x_estimate, P_estimate] = KalmanFilter(z, x_init, P_init, A, H, Q, R)
% Perform Kalman filtering on a given time series of measurements.
% Inputs:
%
z: measurement data
%
x_init: initial state estimate
%
P_init: initial covariance estimate
%
A: state transition matrix
%
H: observation matrix
%
Q: process noise covariance
%
R: observation noise covariance
% Outputs:
%
x_estimate: estimated state trajectory
%
P_estimate: estimated covariance trajectory
x_estimate = x_init;
P_estimate = P_init;
for i = 1:length(z)
% Time update (prediction)
x_predict = A * x_estimate;
P_predict = A * P_estimate * A' + Q;
% Measurement update (correction)
K = P_predict * H' / (H * P_predict * H' + R);
x_estimate = x_predict + K * (z(i) - H * x_predict);
P_estimate = (eye(size(A)) - K * H) * P_predict;
% Store the results
x_estimate_trajectory(:,i) = x_estimate;
P_estimate_trajectory(:,:,i) = P_estimate;
end
最后
以上就是英俊人生为你收集整理的卡尔曼滤波器(Kalman-Filter)算法Matlab程序的全部内容,希望文章能够帮你解决卡尔曼滤波器(Kalman-Filter)算法Matlab程序所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复