我是靠谱客的博主 忐忑外套,最近开发中收集的这篇文章主要介绍HDU1874 畅通工程续 最短路Dijkstra n 2+nlogn +Floyd+SPFA 堆栈+队列,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

               
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input

3 30 1 10 2 31 2 10 23 10 1 11 2
 

Sample Output

2-1


 

今天刚刚开始学习最短路,这道题也就是一道裸的最短路题,狠狠的将这道题敲个各个最短路的模板- -

首先是Dijkstra,这个是n^2的复杂度版本

#include <stdio.h>#include <string.h>#include <algorithm>using namespace std;const int inf = 1<<30;int n,m;int map[300][300];int vis[300],cast[300];void Dijkstra(int s,int e){    int i,j,min,pos;    memset(vis,0,sizeof(vis));    cast[s] = 0;    vis[s] = 1;    for(i = 0;i<n;i++)    cast[i] = map[s][i];    for(i = 1;i<n;i++)    {        min = inf;        for(j = 0;j<n;j++)        {            if(cast[j]<min && !vis[j])            {                pos = j;                min = cast[j];            }        }        vis[pos] = 1;        for(j = 0;j<n;j++)        {            if(cast[pos]+map[pos][j]<cast[j] && !vis[j])            cast[j] = cast[pos]+map[pos][j];        }    }}int main(){    int i,j,x,y,z,start,end;    while(~scanf("%d%d",&n,&m))    {        for(i = 0; i<200; i++)        {            for(j = 0; j<200; j++)                map[i][j] = inf;            map[i][i] = 0;        }        for(i = 0; i<m; i++)        {            scanf("%d%d%d",&x,&y,&z);            if(z<map[x][y])            map[x][y] = map[y][x] = z;        }        scanf("%d%d",&start,&end);        Dijkstra(start,end);        printf("%dn",cast[end]==inf?-1:cast[end]);    }    return 0;}


 

还是Dijkstra,但是这个复杂度为nlogn,当然其优势在这道题并不明显,数据量太小

#include <stdio.h>#include <queue>#include <string.h>#include <algorithm>using namespace std;const int inf = 1<<30;const int L = 1000+10;struct Edges{    int x,y,w,next;};struct node{    int d;    int u;    node (int dd = 0,int uu = 0):d(dd),u(uu) {}    bool operator < (const node &x) const    {        return u>x.u;    }};priority_queue<node> Q;Edges e[L<<2];int head[L];int dis[L];int vis[L];void AddEdge(int x,int y,int w,int k){    e[k].x = x,e[k].y = y,e[k].w = w,e[k].next = head[x],head[x] = k++;    e[k].x = y,e[k].y = x,e[k].w = w,e[k].next = head[y],head[y] = k++;}void init(int n,int m){    int i;    memset(e,-1,sizeof(e));    for(i = 0; i<n; i++)    {        dis[i] = inf;        vis[i] = 0;        head[i] = -1;    }    for(i = 0; i<2*m; i+=2)    {        int x,y,w;        scanf("%d%d%d",&x,&y,&w);        AddEdge(x,y,w,i);    }}int Dijkstra(int n,int src){    node mv;    int i,j,k,pre;    vis[src] = 1;    dis[src] = 0;    Q.push(node(src,0));    for(pre = src,i = 1; i<n; i++)    {        for(j = head[pre]; j!=-1; j=e[j].next)        {            k = e[j].y;            if(!vis[k] && dis[pre]+e[j].w<dis[k])            {                dis[k] = dis[pre]+e[j].w;                Q.push(node(e[j].y,dis[k]));            }        }        while(!Q.empty()&&vis[Q.top().d]==1)            Q.pop();        if(Q.empty())            break;        mv = Q.top();        Q.pop();        vis[pre=mv.d] = 1;    }}int main(){    int n,m,i,j,x,y;    while(~scanf("%d%d",&n,&m))    {        init(n,m);        scanf("%d%d",&x,&y);        Dijkstra(n,x);        printf("%dn",dis[y]==inf?-1:dis[y]);    }    return 0;}


 

然后是Floyd,这个算法写起来比较简单,但是复杂度为n^3,,花费时间太多了

#include <stdio.h>#include <string.h>#include <algorithm>using namespace std;const int inf = 100000000;int map[205][205];void Floyd(int n){    int i,j,k;    for(i = 0;i<n;i++)    for(j = 0;j<n;j++)    for(k = 0;k<n;k++)    if(map[j][i]+map[i][k]<map[j][k])    map[j][k] = map[j][i]+map[i][k];}int main(){    int n,m,i,j,x,y,z,start,end;    while(~scanf("%d%d",&n,&m))    {        for(i = 0; i<200; i++)        {            for(j = 0; j<200; j++)                map[i][j] = inf;            map[i][i] = 0;        }        while(m--)        {            scanf("%d%d%d",&x,&y,&z);            if(z<map[x][y])            map[x][y] = map[y][x] = z;        }        Floyd(n);        scanf("%d%d",&start,&end);        printf("%dn",map[start][end]!=inf?map[start][end]:-1);    }    return 0;}


 

SPFA有两个版本,首先是堆栈的实现

#include <stdio.h>#include <string.h>#include <algorithm>using namespace std;const int inf = 1<<30;const int L = 2000+10;struct Edges{    int x,y,w,next;}e[L<<2];int head[L];int dis[L];int vis[L];int relax(int u,int v,int c){    if(dis[v]>dis[u]+c)    {        dis[v] = dis[u]+c;        return 1;    }    return 0;}void AddEdge(int x,int y,int w,int k){    e[k].x = x,e[k].y = y,e[k].w = w,e[k].next = head[x],head[x] = k++;    e[k].x = y,e[k].y = x,e[k].w = w,e[k].next = head[y],head[y] = k++;}void init(int n,int m){    int i;    memset(e,-1,sizeof(e));    for(i = 0; i<n; i++)    {        dis[i] = inf;        vis[i] = 0;        head[i] = -1;    }    for(i = 0; i<2*m; i+=2)    {        int x,y,w;        scanf("%d%d%d",&x,&y,&w);        AddEdge(x,y,w,i);    }}int SPFA(int src){    int i;    dis[src] = 0;    vis[src] = 1;    int Q[2005],top = 1;    Q[0] = src;    while(top)    {        int u,v;        u = Q[--top];        vis[u] = 0;        for(i = head[u];i!=-1;i=e[i].next)        {            v = e[i].y;            if(relax(u,v,e[i].w)==1 && !vis[v])            {                Q[top++] = v;                vis[v] = 1;            }        }    }}int main(){    int n,m,i,j,x,y;    while(~scanf("%d%d",&n,&m))    {        init(n,m);        scanf("%d%d",&x,&y);        SPFA(x);        printf("%dn",dis[y]==inf?-1:dis[y]);    }    return 0;}


 

还是SPFA,这次是队列的实现

#include <stdio.h>#include <string.h>#include <queue>#include <algorithm>using namespace std;const int inf = 1<<30;const int L = 2000+10;struct Edges{    int x,y,w,next;}e[L<<2];int head[L];int dis[L];int vis[L];int cnt[L];int relax(int u,int v,int c){    if(dis[v]>dis[u]+c)    {        dis[v] = dis[u]+c;        return 1;    }    return 0;}void AddEdge(int x,int y,int w,int k){    e[k].x = x,e[k].y = y,e[k].w = w,e[k].next = head[x],head[x] = k++;    e[k].x = y,e[k].y = x,e[k].w = w,e[k].next = head[y],head[y] = k++;}void init(int n,int m){    int i;    memset(e,-1,sizeof(e));    for(i = 0; i<n; i++)    {        dis[i] = inf;        vis[i] = 0;        head[i] = -1;    }    for(i = 0; i<2*m; i+=2)    {        int x,y,w;        scanf("%d%d%d",&x,&y,&w);        AddEdge(x,y,w,i);    }}int SPFA(int src){    int i;    memset(cnt,0,sizeof(cnt));    dis[src] = 0;    queue<int> Q;    Q.push(src);    vis[src] = 1;    cnt[src]++;    while(!Q.empty())    {        int u,v;        u = Q.front();        Q.pop();        vis[u] = 0;        for(i = head[u];i!=-1;i=e[i].next)        {            v = e[i].y;            if(relax(u,v,e[i].w)==1 && !vis[v])            {                Q.push(v);                vis[v] = 1;            }        }    }}int main(){    int n,m,i,j,x,y;    while(~scanf("%d%d",&n,&m))    {        init(n,m);        scanf("%d%d",&x,&y);        SPFA(x);        printf("%dn",dis[y]==inf?-1:dis[y]);    }    return 0;}


 

 

           

最后

以上就是忐忑外套为你收集整理的HDU1874 畅通工程续 最短路Dijkstra n 2+nlogn +Floyd+SPFA 堆栈+队列的全部内容,希望文章能够帮你解决HDU1874 畅通工程续 最短路Dijkstra n 2+nlogn +Floyd+SPFA 堆栈+队列所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(38)

评论列表共有 0 条评论

立即
投稿
返回
顶部