我是靠谱客的博主 优秀菠萝,最近开发中收集的这篇文章主要介绍Difference between plans obtained by CHOMP and OMPL,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Optimizing planners optimize a cost function that may sometimes lead to surprising results: moving through a thin obstacle might be lower cost than a long, winding trajectory that avoids all collisions. In this section we make a distinction between paths obtained from CHOMP and contrast it to those obtained from OMPL.

OMPL is a open source library for sampling based / randomized motion planning algorithms. Sampling based algorithms are probabilistically complete: a solution would be eventually found if one exists, however non-existence of a solution cannot be reported. These algorithms are efficient and usually find a solution quickly. OMPL does not contain any code related to collision checking or visualization as the designers of OMPL did not want to tie it to a any particular collision checker or visualization front end. The library is designed so it can be easily integrated into systems that provide the additional components. MoveIt! integrates directly with OMPL and uses the motion planners from OMPL as its default set of planners. The planners in OMPL are abstract; i.e. OMPL has no concept of a robot. Instead, MoveIt! configures OMPL and provides the back-end for OMPL to work with problems in Robotics.

CHOMP: While most high-dimensional motion planners separate trajectory generation into distinct planning and optimization stages, CHOMP capitalizes on covariant gradient and functional gradient approaches to the optimization stage to design a motion planning algorithm based entirely on trajectory optimization. Given an infeasible naive trajectory, CHOMP reacts to the surrounding environment to quickly pull the trajectory out of collision while simultaneously optimizing dynamical quantities such as joint velocities and accelerations. It rapidly converges to a smooth collision-free trajectory that can be executed efficiently on the robot. A covariant update rule ensures that CHOMP quickly converges to a locally optimal trajectory.

For scenes containing obstacles, CHOMP often generates paths which do not prefer smooth trajectories by addition of some noise (ridge_factor) in the cost function for the dynamical quantities of the robot (like acceleration, velocity). CHOMP is able to avoid obstacles in most cases but it can fail if it gets stuck in the local minima due to a bad initial guess for the trajectory. OMPL can be used to generate collision-free seed trajectories for CHOMP to mitigate this issue.

最后

以上就是优秀菠萝为你收集整理的Difference between plans obtained by CHOMP and OMPL的全部内容,希望文章能够帮你解决Difference between plans obtained by CHOMP and OMPL所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(44)

评论列表共有 0 条评论

立即
投稿
返回
顶部