本文将重点介绍如何使用LSTM神经网络架构,使用Keras和Tensorflow提供时间序列预测,特别是在股票市场数据集上,以提供股票价格的动量指标。
这个框架的代码可以在下面的GitHub repo中找到(它假设python版本3.5.x和requirements.txt文件中的需求版本。偏离这些版本可能会导致错误):https://github.com/jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction
什么是LSTM神经元?
最后
以上就是轻松飞鸟最近收集整理的关于案例剖析:利用LSTM深层神经网络进行时间序列预测的全部内容,更多相关案例剖析内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复