复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165import numpy as np import tensorflow as tf from sklearn.preprocessing import OneHotEncoder import random import os from tensorflow.contrib import rnn data_num=np.array([0,1,2,3,4,5,6,7,8,9]) data_num=data_num.reshape([-1,1]) data_num=OneHotEncoder().fit_transform(data_num).todense() batch_size=100 #print(data) def get_data(batch_size=100): batch_in_data=[] batch_out_data=[] d1 = [] for i in range(batch_size): a=random.randint(0,10000000) b=random.randint(0,10000000) c=[a,b] d=a+b d1.append(d) data=[] label=[] out_data=[] for j in c: for i in range(8): data.insert(i,j%10) j=j//10 data=np.array(data) data=data.reshape([2,8]).T data=data.reshape([8,2]) for i in range(8): out_data.insert(i,d%10) d=d//10 for x in out_data: label.append(data_num[x]) #print(out_data) label=np.array(label) label=label.reshape([8,10]) batch_out_data.append(label) batch_in_data.append(data) batch_in_data=np.array(batch_in_data) batch_out_data=np.array(batch_out_data) batch_in_data=batch_in_data.astype("float32") batch_out_data=batch_out_data.astype("float32") batch_in_data=batch_in_data.reshape([-1,8,2]) batch_out_data=batch_out_data.reshape([-1,8,10]) return batch_in_data,batch_out_data,d1 #输入: x=tf.placeholder(tf.float32,[None,8,2]) y=tf.placeholder(tf.float32,[None,8,10]) #y=tf.placeholder(tf.int64,[8]) ''' weights = { 'out' : tf.Variable(tf.random_normal([8, 10])) #128*10 } biases = { 'out' : tf.Variable(tf.random_normal([10])) #1*10 } ''' weights = {'in':tf.Variable(tf.random_normal([2, 8])), 'out':tf.Variable(tf.random_normal([8, 10]))} biases = {'in':tf.Variable(tf.constant(0.1, shape=[8, ])), 'out':tf.Variable(tf.constant(0.1, shape=[10, ]))} def RNN(X, weights, biases): #print(X) #X=tf.transpose(X,[1,0,2]) #X=tf.reshape(X,[-1,2]) #X_in = tf.matmul(X, weights['in']) + biases['in'] #print(X_in) #X_in = tf.reshape(X_in, [-1,8,16]) #X_in=tf.reshape(X_in,[-1,8,8]) X_in=tf.transpose(X,[1,0,2]) #X_in = tf.split(x,8,0) print(X_in) # 使用基本的LSTM循环网络单元 #lstm_cell = tf.contrib.rnn.BasicLSTMCell(16, forget_bias=1.0, state_is_tuple=True) lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(8, forget_bias=1.0, state_is_tuple=True) #print(1) # 初始化为0,LSTM单元由两部分构成(c_state, h_state) init_state = lstm_cell.zero_state(100, dtype=tf.float32) #print(2) # dynamic_rnn接收张量要么为(batch, steps, inputs)或者(steps, batch, inputs)作为X_in outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=init_state, time_major=True) print("outputs:",outputs) outputs = tf.reshape(outputs,[-1,8]) results = tf.matmul(outputs, weights["out"]) + biases["out"] #outputs = tf.reshape(outputs, [-1, 16]) #results = tf.matmul(outputs, weights['out']) + biases['out'] #print("results:",results) #results = tf.reshape(results, [-1, 8, 10]) print("results:",results) results = tf.reshape(results,[8,-1,10]) print(results) results = tf.transpose(results, [1, 0,2]) #os.system("pause") return results pred = RNN(x, weights, biases) pre = tf.argmax(pred,2) #pre = tf.argmax(pred,1) #cost = tf.reduce_mean(tf.square(pred-y)) #print(pre) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y)) #cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred, labels=y)) #optimizer = tf.train.AdagradOptimizer(1).minimize(cost) optimizer = tf.train.AdamOptimizer(0.01).minimize(cost) correct_pred = tf.equal(tf.argmax(pred, 2), tf.argmax(y, 2)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) def train(): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(2000000): batch_xs,batch_ys,d=get_data(100) #print(batch_xs.shape,batch_ys.shape) sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) #print(5) if i%100 ==0: cc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys}) loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) print("cc:",cc," loss:",loss) if i % 1000==0: batch_xs,batch_ys,d=get_data(100) #print(batch_xs) #print(batch_ys) #os.system("pause") pree = sess.run(pre,feed_dict={x:batch_xs}) #cc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys}) #loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) for j in range(5): print("true:",d[j]) print("pree:",pree[j][::-1][0:8]) print("________________") #os.system("pause") sess.close() train()
复制代码
1以上就是实现的全过程,欢迎提问,有问必答,也欢迎指导
贴一张训练后的图,说实话,自己敲一遍对这个东西的理解会深许多
最后
以上就是秀丽花生最近收集整理的关于用lstm实现7位数以内的加法的全部内容,更多相关用lstm实现7位数以内内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复