我是靠谱客的博主 害羞小蜜蜂,这篇文章主要介绍R 语言 RFM 模型实现,现在分享给大家,希望可以做个参考。

以前一直在猜测RFM的实现原理,今天总算了解了一点

直接附上R code,google所得:

##Creating Random Sales Data of the format CustomerId (unique to each customer), Sales.Date,Purchase.Value

sales=data.frame(sample(1000:1999,replace=T,size=10000),abs(round(rnorm(10000,28,13))))

names(sales)=c("CustomerId","Sales Value")

sales.dates <- as.Date("2012/1/1") + 700*sort(stats::runif(10000))

#generating random dates

sales=cbind(sales,sales.dates)

str(sales)

sales$recency=round(as.numeric(difftime(Sys.Date(),sales[,3],units="days")) )

##library(gregmisc)

##if you have existing sales data you need to just shape it in this format

rename.vars(sales, from="Sales Value", to="Purchase.Value")#Renaming Variable Names

## Creating Total Sales(Monetization),Frequency, Last Purchase date for each customer

salesM=aggregate(sales[,2],list(sales$CustomerId),sum)

names(salesM)=c("CustomerId","Monetization")

salesF=aggregate(sales[,2],list(sales$CustomerId),length)

names(salesF)=c("CustomerId","Frequency")

salesR=aggregate(sales[,4],list(sales$CustomerId),min)

names(salesR)=c("CustomerId","Recency")

##Merging R,F,M

test1=merge(salesF,salesR,"CustomerId")

salesRFM=merge(salesM,test1,"CustomerId")

##Creating R,F,M levels

salesRFM$rankR=cut(salesRFM$Recency, 100,labels=F) #rankR 1 is very recent while rankR 5 is least recent

salesRFM$rankF=cut(salesRFM$Frequency, 100,labels=F)#rankF 1 is least frequent while rankF 5 is most frequent

salesRFM$rankM=cut(salesRFM$Monetization, 100,labels=F)#rankM 1 is lowest sales while rankM 5 is highest sales

##Looking at RFM tables

table(salesRFM[,5:6])
table(salesRFM[,6:7])
table(salesRFM[,5:7])




Note-you can also use quantile function instead of cut function. This changes cut to equal length instead of equal interval. or  see other methods for finding breaks for categories.

最后

以上就是害羞小蜜蜂最近收集整理的关于R 语言 RFM 模型实现的全部内容,更多相关R内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(115)

评论列表共有 0 条评论

立即
投稿
返回
顶部