我是靠谱客的博主 平淡纸鹤,这篇文章主要介绍通过timm下载模型,现在分享给大家,希望可以做个参考。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os import warnings from pprint import pprint from glob import glob from tqdm import tqdm import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import numpy as np import pandas as pd import matplotlib.pyplot as plt import torchvision.transforms as T from box import Box from timm import create_model from sklearn.model_selection import StratifiedKFold from torchvision.io import read_image from torch.utils.data import DataLoader, Dataset from pytorch_grad_cam import GradCAMPlusPlus from pytorch_grad_cam.utils.image import show_cam_on_image import pytorch_lightning as pl from pytorch_lightning.utilities.seed import seed_everything from pytorch_lightning import callbacks from pytorch_lightning.callbacks.progress import ProgressBarBase from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning import LightningDataModule, LightningModule config = {'seed': 20211111, 'root': './input/petfinder-pawpularity-score/', 'n_splits': 5, 'epoch': 60, 'trainer': { 'gpus': 1, 'accumulate_grad_batches': 1, 'progress_bar_refresh_rate': 1, 'fast_dev_run': False, 'num_sanity_val_steps': 0, 'resume_from_checkpoint': None, }, 'transform':{ 'name': 'get_default_transforms', 'image_size': 600 }, 'train_loader':{ 'batch_size': 2, 'shuffle': True, 'num_workers': 4, 'pin_memory': False, 'drop_last': True, }, 'val_loader': { 'batch_size': 2, 'shuffle': False, 'num_workers': 4, 'pin_memory': False, 'drop_last': False }, 'model':{ 'name': 'vit_large_patch16_384', 'output_dim': 1 }, 'optimizer':{ 'name': 'optim.AdamW', 'params':{ 'lr': 1e-5 }, }, 'scheduler':{ 'name': 'optim.lr_scheduler.CosineAnnealingWarmRestarts', 'params':{ 'T_0': 20, 'eta_min': 1e-4, } }, 'loss': 'nn.BCEWithLogitsLoss', } config = Box(config) pprint(config) class Model(pl.LightningModule): def __init__(self, cfg): super().__init__() self.cfg = cfg self.__build_model() self._criterion = eval(self.cfg.loss)() self.transform = get_default_transforms() self.save_hyperparameters(cfg) def __build_model(self): self.backbone = create_model( self.cfg.model.name, pretrained=True, num_classes=0, in_chans=3 ) num_features = self.backbone.num_features self.fc = nn.Sequential( nn.Dropout(0.5), nn.Linear(num_features, self.cfg.model.output_dim) ) def forward(self, x): f = self.backbone(x) out = self.fc(f) return out def training_step(self, batch, batch_idx): loss, pred, labels = self.__share_step(batch, 'train') return {'loss': loss, 'pred': pred, 'labels': labels} def validation_step(self, batch, batch_idx): loss, pred, labels = self.__share_step(batch, 'val') return {'pred': pred, 'labels': labels} def __share_step(self, batch, mode): images, labels = batch labels = labels.float() / 100.0 images = self.transform[mode](images) if torch.rand(1)[0] < 0.5 and mode == 'train': mix_images, target_a, target_b, lam = mixup(images, labels, alpha=0.5) logits = self.forward(mix_images).squeeze(1) loss = self._criterion(logits, target_a) * lam + (1 - lam) * self._criterion(logits, target_b) else: logits = self.forward(images).squeeze(1) loss = self._criterion(logits, labels) pred = logits.sigmoid().detach().cpu() * 100. labels = labels.detach().cpu() * 100. return loss, pred, labels def training_epoch_end(self, outputs): self.__share_epoch_end(outputs, 'train') def validation_epoch_end(self, outputs): self.__share_epoch_end(outputs, 'val') def __share_epoch_end(self, outputs, mode): preds = [] labels = [] for out in outputs: pred, label = out['pred'], out['labels'] preds.append(pred) labels.append(label) preds = torch.cat(preds) labels = torch.cat(labels) metrics = torch.sqrt(((labels - preds) ** 2).mean()) self.log(f'{mode}_loss', metrics) def check_gradcam(self, dataloader, target_layer, target_category, reshape_transform=None): cam = GradCAMPlusPlus( model=self, #target_layer=target_layer, target_layers=[target_layer], use_cuda=self.cfg.trainer.gpus, reshape_transform=reshape_transform) org_images, labels = iter(dataloader).next() cam.batch_size = len(org_images) images = self.transform['val'](org_images) images = images.to(self.device) logits = self.forward(images).squeeze(1) pred = logits.sigmoid().detach().cpu().numpy() * 100 labels = labels.cpu().numpy() grayscale_cam = cam(input_tensor=images, target_category=target_category, eigen_smooth=True) org_images = org_images.detach().cpu().numpy().transpose(0, 2, 3, 1) / 255. return org_images, grayscale_cam, pred, labels def configure_optimizers(self): optimizer = eval(self.cfg.optimizer.name)( self.parameters(), **self.cfg.optimizer.params ) scheduler = eval(self.cfg.scheduler.name)( optimizer, **self.cfg.scheduler.params ) return [optimizer], [scheduler] IMAGENET_MEAN = [0.485, 0.456, 0.406] # RGB IMAGENET_STD = [0.229, 0.224, 0.225] # RGB def get_default_transforms(): transform = { "train": T.Compose( [ T.RandomHorizontalFlip(), T.RandomVerticalFlip(), T.RandomAffine(15, translate=(0.1, 0.1), scale=(0.9, 1.1)), T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1), T.ConvertImageDtype(torch.float), T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD), ] ), "val": T.Compose( [ T.ConvertImageDtype(torch.float), T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD), ] ), } return transform model = Model(config)

最后

以上就是平淡纸鹤最近收集整理的关于通过timm下载模型的全部内容,更多相关通过timm下载模型内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(59)

评论列表共有 0 条评论

立即
投稿
返回
顶部