我是靠谱客的博主 忧虑乌龟,这篇文章主要介绍TensorRT5输出engine网络层,现在分享给大家,希望可以做个参考。

        由于TensorRT5的API相对于TensorRT4有了不少改变,特别是删除了config类,无法打印转换后生成的trt_engine网络层。通过依次读取network每个layer并判断layer类别,输出layer的设置属性,可以达到更好的查看效果。

        代码如下:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
const std::string kShowLayerType[24] = { "Convolution layer", "Fully connected layer", "Activation layer", "Pooling layer", "LRN layer", "Scale Layer", "SoftMax layer", "Deconvolution layer", "Concatenation layer", "Elementwise layer", "Plugin layer", "RNN Layer", "UnaryOp Operation Layer", "Padding Layer", "Shuffle Layer", "Reduce layer", "TopK Layer", "Gather Layer", "Matrix Multiply Layer", "Ragged softmax Layer", "Constant Layer", "RNNv2 layer", "Identity layer", "PluginV2 Layer"}; const std::string kShowActivationType[3] = {"kRELU", "kSIGMOID", "kTANH"}; const std::string kShowPoolingType[3] = {"kMAX", "kAVERAGE", "kMAX_AVERAGE_BLEND"}; const std::string kShowScaleType[3] = {"kUNIFORM", "kCHANNEL", "kELEMENTWISE"}; const std::string kShowElementWiseType[7] = {"kSUM", "kPROD", "kMAX", "kMIN", "kSUB", "kDIV", "kPOW"}; const std::string kShowUnaryType[6] = {"kEXP", "kLOG", "kSQRT", "kRECIP", "kABS", "kPOW"}; const std::string kShowReduceType[5] = {"kSUM", "kPROD", "kMAX", "kMIN", "kAVG"}; const std::string kShowMatrixOpType[3] = {"kNONE", "kTRANSPOSE", "kVECTOR"}; const std::string kShowDataType[4] = {"kFLOAT", "kHALF", "kINT8", "kINT32"}; void PrintLayerInfo(nvinfer1::INetworkDefinition *network) { std::cout << "------Network layers------" << std::endl; int layer_num = network->getNbLayers(); nvinfer1::ILayer *layer; int layer_index; for(int i=0; i<layer_num; i++) { layer = network->getLayer(i); layer_index = static_cast<int>(layer->getType()); switch(layer_index) { case 0: { nvinfer1::IConvolutionLayer *convlayer; convlayer = (nvinfer1::IConvolutionLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + convlayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: "; //in channels nvinfer1::ITensor *intensor = convlayer->getInput(0); showstring += "in_channels=" + std::to_string(intensor->getDimensions().d[0]) + ", "; //out channels nvinfer1::ITensor *outtensor = convlayer->getOutput(0); showstring += "out_channels=" + std::to_string(outtensor->getDimensions().d[0]) + ", "; //kernel size nvinfer1::DimsHW kdims = convlayer->getKernelSize(); showstring += "kernel_size=[" + std::to_string(kdims.h()) + ", " + std::to_string(kdims.w()) + "], "; //stride nvinfer1::DimsHW sdims = convlayer->getStride(); showstring += "stride=[" + std::to_string(sdims.h()) + ", " + std::to_string(sdims.w()) + "], "; //padding nvinfer1::DimsHW pdims = convlayer->getPadding(); showstring += "padding=[" + std::to_string(pdims.h()) + ", " + std::to_string(pdims.w()) + "], "; //dilation nvinfer1::DimsHW ddims = convlayer->getDilation(); showstring += "dilation=[" + std::to_string(ddims.h()) + ", " + std::to_string(ddims.w()) + "], "; //groups showstring += "groups=" + std::to_string(convlayer->getNbGroups()) + ", "; //bias nvinfer1::Weights bweight = convlayer->getBiasWeights(); if(bweight.count>0) { showstring += "bias=True"; } else { showstring += "bias=False"; } std::cout << showstring << std::endl; break; } case 1: { nvinfer1::IFullyConnectedLayer *linearlayer; linearlayer = (nvinfer1::IFullyConnectedLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + linearlayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: "; //in features nvinfer1::ITensor *intensor = linearlayer->getInput(0); showstring += "in_features=" + std::to_string(intensor->getDimensions().d[0]) + ", "; //out channels nvinfer1::ITensor *outtensor = linearlayer->getOutput(0); showstring += "out_features=" + std::to_string(outtensor->getDimensions().d[0]) + ", "; //bias nvinfer1::Weights bweight = linearlayer->getBiasWeights(); if(bweight.count>0) { showstring += "bias=True"; } else { showstring += "bias=False"; } std::cout << showstring << std::endl; break; } case 2: { nvinfer1::IActivationLayer *activatelayer; activatelayer = (nvinfer1::IActivationLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + activatelayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Activation_Type="; int act_index = static_cast<int>(activatelayer->getActivationType()); showstring += kShowActivationType[act_index]; std::cout << showstring <<std::endl; break; } case 3: { // kernel_size, stride=None, padding=0, dilation=1, // ceil_mode=False, return_indices=False): nvinfer1::IPoolingLayer *poolinglayer; poolinglayer = (nvinfer1::IPoolingLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + poolinglayer->getName() + "--"; //pooling type showstring += kShowLayerType[layer_index] + "--Pooling_Type="; int pooling_index = static_cast<int>(poolinglayer->getPoolingType()); showstring += kShowPoolingType[pooling_index] +", Settings: "; //window size nvinfer1::DimsHW wdims = poolinglayer->getWindowSize(); showstring += "window_size=[" + std::to_string(wdims.h()) + ", " + std::to_string(wdims.w()) + "], "; //stride nvinfer1::DimsHW sdims = poolinglayer->getStride(); showstring += "stride=[" + std::to_string(sdims.h()) + ", " + std::to_string(sdims.w()) + "], "; //padding nvinfer1::DimsHW pdims = poolinglayer->getPadding(); showstring += "padding=[" + std::to_string(pdims.h()) + ", " + std::to_string(pdims.w()) + "]"; std::cout << showstring << std::endl; break; } case 4: { nvinfer1::ILRNLayer *lrnlayer; lrnlayer = (nvinfer1::ILRNLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + lrnlayer->getName(); std::cout << showstring << std::endl; break; } case 5: { nvinfer1::IScaleLayer *scalelayer; scalelayer = (nvinfer1::IScaleLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + scalelayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Scale_Type="; int scale_index = static_cast<int>(scalelayer->getMode()); showstring += kShowScaleType[scale_index]; std::cout << showstring <<std::endl; break; } case 6: { nvinfer1::ISoftMaxLayer *softmaxlayer; softmaxlayer = (nvinfer1::ISoftMaxLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + softmaxlayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: "; showstring += "axis=" + std::to_string(softmaxlayer->getAxes()); std::cout << showstring << std::endl; break; } case 7: { nvinfer1::IDeconvolutionLayer *deconvlayer; deconvlayer = (nvinfer1::IDeconvolutionLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + deconvlayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: "; //in channels nvinfer1::ITensor *intensor = deconvlayer->getInput(0); showstring += "in_channels=" + std::to_string(intensor->getDimensions().d[0]) + ", "; //out channels nvinfer1::ITensor *outtensor = deconvlayer->getOutput(0); showstring += "out_channels=" + std::to_string(outtensor->getDimensions().d[0]) + ", "; //kernel size nvinfer1::DimsHW kdims = deconvlayer->getKernelSize(); showstring += "kernel_size=[" + std::to_string(kdims.h()) + ", " + std::to_string(kdims.w()) + "], "; //stride nvinfer1::DimsHW sdims = deconvlayer->getStride(); showstring += "stride=[" + std::to_string(sdims.h()) + ", " + std::to_string(sdims.w()) + "], "; //padding nvinfer1::DimsHW pdims = deconvlayer->getPadding(); showstring += "padding=[" + std::to_string(pdims.h()) + ", " + std::to_string(pdims.w()) + "], "; //groups showstring += "groups=" + std::to_string(deconvlayer->getNbGroups()) + ", "; //bias nvinfer1::Weights bweight = deconvlayer->getBiasWeights(); if(bweight.count>0) { showstring += "bias=True"; } else { showstring += "bias=False"; } std::cout << showstring << std::endl; break; } case 8: { nvinfer1::IConcatenationLayer *concatlayer; concatlayer = (nvinfer1::IConcatenationLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + concatlayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: "; showstring += "axis=" + std::to_string(concatlayer->getAxis()); std::cout << showstring << std::endl; break; } case 9: { nvinfer1::IElementWiseLayer *elementlayer; elementlayer = (nvinfer1::IElementWiseLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + elementlayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Elementwise_Type="; int elem_index = static_cast<int>(elementlayer->getOperation()); showstring += kShowElementWiseType[elem_index]; std::cout << showstring <<std::endl; break; } case 10: { nvinfer1::IPluginLayer *pluginlayer; pluginlayer = (nvinfer1::IPluginLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + pluginlayer->getName() + "--"; showstring += kShowLayerType[layer_index]; std::cout << showstring << std::endl; break; } case 11: { nvinfer1::IRNNLayer *rnnlayer; rnnlayer = (nvinfer1::IRNNLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + rnnlayer->getName() + "--"; showstring += kShowLayerType[layer_index]; std::cout << showstring << std::endl; break; } case 12: { nvinfer1::IUnaryLayer *unarylayer; unarylayer = (nvinfer1::IUnaryLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + unarylayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Unary_Type="; int unary_index = static_cast<int>(unarylayer->getOperation()); showstring += kShowUnaryType[unary_index]; std::cout << showstring <<std::endl; break; } case 13: { nvinfer1::IPaddingLayer *padlayer; padlayer = (nvinfer1::IPaddingLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + padlayer->getName() + "--"; showstring += kShowLayerType[layer_index]; std::cout << showstring << std::endl; break; } case 14: { //layer index, layer name, layer type nvinfer1::IShuffleLayer *shufflelayer; shufflelayer = (nvinfer1::IShuffleLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + shufflelayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--"; //first transpose order int *porder = shufflelayer->getFirstTranspose().order; int order[3] = {porder[0], porder[1], porder[2]}; if(!(order[0]==0 && order[1]==1 && order[2]==2)) { showstring += "Shuffle_Type=kTRANSPOSE0--Settings: order=["; showstring += std::to_string(order[0]) + ", " + std::to_string(order[1]) + ", " + std::to_string(order[2]) + "]"; } //second transpose order porder = shufflelayer->getSecondTranspose().order; order[0] = porder[0]; order[1] = porder[1]; order[2] = porder[2]; if(order[0]!=0 || order[1] !=1 || order[2]!=2) { showstring += "Shuffle_Type=kTRANSPOSE1--Settings: order=["; showstring += std::to_string(order[0]) + ", " + std::to_string(order[1]) + ", " + std::to_string(order[2]) + "]"; } //reshape dims nvinfer1::Dims rdims = shufflelayer->getReshapeDimensions(); if(rdims.nbDims==3) { if(rdims.d[0]!=0 || rdims.d[1]!=0 || rdims.d[2]!=0) { showstring += "Shuffle_Type=kRESHAPE--Settings: dims=["; for(int j=0; j<rdims.nbDims; j++) { showstring += std::to_string(rdims.d[j]) + ", "; } showstring += "]"; } } std::cout << showstring << std::endl; break; } case 15: { nvinfer1::IReduceLayer *reducelayer; reducelayer = (nvinfer1::IReduceLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + reducelayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Reduce_Type="; int reduce_index = static_cast<int>(reducelayer->getOperation()); showstring += kShowReduceType[reduce_index] + "--Settings: axis="; showstring += std::to_string(reducelayer->getReduceAxes()) + ", keep_dims="; showstring += std::to_string(reducelayer->getKeepDimensions()); std::cout << showstring << std::endl; break; } case 16: { nvinfer1::ITopKLayer *topklayer; topklayer = (nvinfer1::ITopKLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + topklayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: axis="; showstring += std::to_string(topklayer->getReduceAxes()) + ", k="; showstring += std::to_string(topklayer->getK()); std::cout << showstring << std::endl; break; } case 17: { nvinfer1::IGatherLayer *gatherlayer; gatherlayer = (nvinfer1::IGatherLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + gatherlayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: axis="; showstring += std::to_string(gatherlayer->getGatherAxis()); std::cout << showstring << std::endl; break; } case 18: { nvinfer1::IMatrixMultiplyLayer *matmullayer; matmullayer = (nvinfer1::IMatrixMultiplyLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + matmullayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: A_op="; int aop_index = static_cast<int>(matmullayer->getOperation(0)); showstring += kShowMatrixOpType[aop_index] + ", A_transpose="; showstring += std::to_string(matmullayer->getTranspose(0)) + ", B_op="; int bop_index = static_cast<int>(matmullayer->getOperation(1)); showstring += kShowMatrixOpType[bop_index] + ", B_transpose="; showstring += std::to_string(matmullayer->getTranspose(1)); std::cout << showstring << std::endl; break; } case 19: { nvinfer1::IRaggedSoftMaxLayer *ragsofxmaxlayer; ragsofxmaxlayer = (nvinfer1::IRaggedSoftMaxLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + ragsofxmaxlayer->getName() + "--"; showstring += kShowLayerType[layer_index]; std::cout << showstring << std::endl; break; } case 20: { //layer index, layer name, layer type nvinfer1::IConstantLayer *constlayer; constlayer = (nvinfer1::IConstantLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + constlayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Settings: dims=["; nvinfer1::Dims cdims = constlayer->getDimensions(); for(int j=0; j<cdims.nbDims; j++) { showstring += std::to_string(cdims.d[i]) + ", "; } showstring += "]"; std::cout << showstring << std::endl; break; } case 21: { nvinfer1::IRNNv2Layer *rnnv2layer; rnnv2layer = (nvinfer1::IRNNv2Layer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + rnnv2layer->getName() + "--"; showstring += kShowLayerType[layer_index]; std::cout << showstring << std::endl; break; } case 22: { nvinfer1::IIdentityLayer *identitylayer; identitylayer = (nvinfer1::IIdentityLayer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + identitylayer->getName() + "--"; showstring += kShowLayerType[layer_index] + "--Output_Datatype="; int dt_index = static_cast<int>(identitylayer->getOutputType(0)); showstring += kShowDataType[dt_index]; std::cout << showstring << std::endl; break; } case 23: { nvinfer1::IPluginV2Layer *pluginv2layer; pluginv2layer = (nvinfer1::IPluginV2Layer*)layer; std::string showstring; showstring += std::to_string(i) + "--" + pluginv2layer->getName() + "--"; showstring += kShowLayerType[layer_index]; std::cout << showstring << std::endl; break; } default: std::cout << i << "--nontype layer" << std::endl; break; } } }

 

最后

以上就是忧虑乌龟最近收集整理的关于TensorRT5输出engine网络层的全部内容,更多相关TensorRT5输出engine网络层内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(59)

评论列表共有 0 条评论

立即
投稿
返回
顶部