我是靠谱客的博主 可耐小霸王,最近开发中收集的这篇文章主要介绍librosa的短时傅里叶实现librosa.stft()1. API参数解析2. 分帧机制3. 附录:librosa官网,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

1. API参数解析

2. 分帧机制

2.1 C语言实现

2.1.1 测试代码

2.2 librosa的短时傅里叶变正换实现

2.2.1 libsora.stft()的分帧机制

2.2.2 测试代码

2.2.3 运行结果分析

2.3 librosa的短时傅里叶逆变换实现

3. 附录:librosa官网


1. API参数解析

函数原型

librosa.stft((y, n_fft=2048, hop_length=None, win_length=None,

window='hann', center=True, pad_mode='reflect'))

函数功能

对语音进行分帧,加窗,及短时傅里叶变换的计算(FFT)

参数

(1) y: 输入的音频时间序列(一般是通过librosa.load()得到)

(2) n_fft : FFT的点数,fft的点数跟窗长可以是不同的,但是一般设置成相同

(3) hop_length : 帧移

(4) win_length : 指的是滑动窗[截断窗]的窗长,一般来说,让这两个相等win_length=n_fft

(5) window : 指定窗函数,字符串的形式,如果不指定,则默认是汉宁窗

(6) center : bool类型,默认值是True,一般使用默认的值即可。指”中心对齐”。这和分帧的机制相关,是我们重点需要研究的参数。

(7) pad_mode : 填充模式设置,使用默认的参数即可,表示使用数据0填充帧数据。

返回值

返回复数矩阵(实数序列经过分帧、加窗以及傅里叶变换后得到的是复数序列,a+bi的形式)。

定义处(源文件)

声明处(头文件)

2. 分帧机制

Libsora的短时傅里叶变换,分帧有点“不常规”。以256个采样点的傅里叶变换为例。

实验数据:为了更直观、简洁、方便地进行试验和理解API的参数以及实现机制,预先从音频文件中读出256个采样点,用数组或者列表进行存储。同样,汉宁窗也可以实现计算出来,并存储,使用时直接查表,可避免运算量,这是算法处理中常见的“以牺牲空间换取时间效率”的做法。

2.1 C语言实现

直接对这256个点进行傅里叶变换,傅里叶变换的点数就是256,阶数就是8。采用复数的FFT计算算法,对于输入:实数部分就是音频数据,虚部全为0。

2.1.1 测试代码

#define FRAME_LEN 256
#define FFT_ORDER ((int)log2(FRAME_LEN))
float dat_i[FRAME_LEN], dat_a[FRAME_LEN];
float dat_r[FRAME_LEN]={
0.000214,
0.000122,
-0.000061,
0.000275,
0.000092,
0.000336,
0.000153,
-0.000092,
0.000031,
0.000305,
0.000641,
0.000458,
0.000305,
0.000153,
0.000397,
0.000732,
0.000885,
0.000580,
0.000427,
0.000397,
0.000641,
0.001190,
0.001282,
0.000977,
0.000336,
0.000458,
0.001007,
0.001617,
0.001465,
0.000824,
0.000275,
0.000366,
0.001007,
0.001282,
0.000885,
0.000122,
-0.000336,
-0.000122,
0.000336,
0.000275,
-0.000153,
-0.000824,
-0.000916,
-0.000580,
-0.000519,
-0.000763,
-0.001099,
-0.001221,
-0.001007,
-0.000580,
-0.000793,
-0.000885,
-0.001038,
-0.000580,
-0.000275,
-0.000214,
-0.000549,
-0.000610,
-0.000061,
0.000702,
0.001190,
0.000763,
0.000305,
0.000275,
0.001068,
0.001923,
0.001953,
0.001190,
0.000488,
0.000519,
0.001251,
0.001740,
0.001282,
0.000397,
-0.000183,
0.000000,
0.000214,
0.000305,
-0.000092,
-0.000458,
-0.000732,
-0.000610,
-0.000671,
-0.000916,
-0.000946,
-0.000824,
-0.000702,
-0.001068,
-0.000977,
-0.001190,
-0.000671,
-0.000244,
-0.000122,
-0.000580,
-0.000854,
-0.000519,
0.000153,
0.000641,
0.000671,
0.000214,
-0.000122,
0.000336,
0.000732,
0.000702,
0.000397,
0.000122,
0.000122,
0.000275,
0.000000,
-0.000458,
-0.000580,
-0.000275,
0.000092,
-0.000244,
-0.001373,
-0.001892,
-0.001465,
-0.000153,
0.000214,
-0.000641,
-0.002533,
-0.002808,
-0.001526,
0.000549,
0.000946,
-0.000824,
-0.002594,
-0.002625,
-0.000427,
0.001678,
0.001587,
-0.000397,
-0.002075,
-0.001526,
0.000549,
0.002014,
0.001740,
-0.000122,
-0.001678,
-0.000916,
0.000610,
0.001556,
0.000977,
-0.000580,
-0.001251,
-0.000854,
-0.000183,
0.000214,
-0.000031,
-0.000671,
-0.001007,
-0.001221,
-0.000916,
-0.000824,
-0.000427,
-0.000549,
-0.000732,
-0.000610,
-0.000854,
-0.000671,
-0.000458,
-0.000183,
0.000031,
0.000275,
0.000427,
-0.000092,
-0.000397,
0.000000,
0.000793,
0.001526,
0.001465,
0.000122,
-0.001068,
-0.000854,
0.000946,
0.002472,
0.002014,
-0.000488,
-0.002350,
-0.002075,
0.000702,
0.002686,
0.001801,
-0.001526,
-0.003662,
-0.002472,
0.000793,
0.002747,
0.001740,
-0.001251,
-0.002991,
-0.001648,
0.001160,
0.003143,
0.002289,
0.000244,
-0.000916,
-0.000305,
0.001526,
0.002960,
0.002808,
0.002289,
0.001221,
0.000092,
0.000427,
0.001404,
0.003021,
0.003479,
0.001709,
-0.001068,
-0.002502,
-0.001007,
0.001831,
0.002960,
0.000427,
-0.003510,
-0.005157,
-0.002930,
0.000580,
0.001648,
-0.001038,
-0.004486,
-0.005463,
-0.002991,
-0.000122,
0.000885,
-0.000488,
-0.002045,
-0.002289,
-0.001129,
0.000214,
0.001343,
0.002441,
0.003448,
0.002991,
0.001282,
0.000153,
0.002014,
0.006134,
0.008820,
0.006439,
0.000793,
-0.002625,
0.000488,
0.007111,
0.010132,
0.004669,
-0.004791,
-0.009033,
-0.004028,
0.004089,
0.006104,
-0.002228,
-0.013214,
-0.016327,
-0.009583,
};
int main(void)
{
for (int i=0; i<FRAME_LEN; i++) {
dat_i[i]=0.0;
dat_r[i]=dat_r[i]*hanning[i];
}
FFT(dat_r, dat_i, dat_a, FRAME_LEN, FFT_ORDER);
//	for (int i=0; i<FRAME_LEN; i++) {
//
printf("[%d] (%f+%fj)n", i, dat_r[i], dat_i[i]);
//
printf("%d %fn", i, dat_r[i]);
//	}
#if 1
FILE* fp_dbg=NULL;
fp_dbg = fopen("res_fft.txt", "wb");
for (int i=0; i<FRAME_LEN; i++) {
fprintf(fp_dbg, "[%d]:%fn", i, dat_r[i]);
}
fclose(fp_dbg);
printf("data output donen");
#endif
return 0;
}

2.1.2 运行结果分析

[0] (-0.016482+0.000000j) //直流分量

[1] (0.023277+0.005782j)

[2] (-0.022870+-0.002839j)

[3] (0.008954+-0.001403j)

[4] (0.009356+-0.005058j)

[5] (0.003737+0.002048j)

[6] (-0.016804+0.000179j)

[7] (-0.005669+0.038893j)

[8] (0.003740+-0.042136j)

[9] (0.001611+0.004286j)

[10] (0.001527+0.002011j)

[11] (0.000186+0.000361j)

[12] (0.000990+-0.000215j)

[13] (0.000373+-0.000256j)

[14] (-0.001273+0.000464j)

[15] (0.001159+0.001058j)

[16] (0.000621+-0.001287j)

[17] (-0.000673+0.001001j)

[18] (0.000025+-0.000228j)

[19] (-0.000244+-0.000012j)

[20] (0.000698+0.000222j)

[21] (-0.000256+-0.000116j)

[22] (-0.000189+-0.000112j)

[23] (0.000449+0.000111j)

[24] (-0.000790+0.000218j)

[25] (0.000185+0.000019j)

[26] (0.001250+-0.000179j)

[27] (-0.000985+-0.000131j)

[28] (-0.000077+0.000429j)

[29] (0.000429+-0.000058j)

[30] (-0.000620+-0.000187j)

[31] (0.000907+0.000340j)

[32] (-0.000126+-0.000314j)

[33] (0.000024+-0.000142j)

[34] (-0.000503+0.000532j)

[35] (0.001116+0.000584j)

[36] (0.000258+-0.000051j)

[37] (0.000807+0.000773j)

[38] (0.003857+0.003912j)

[39] (-0.022648+0.023224j)

[40] (-0.000071+-0.056523j)

[41] (0.021825+0.018984j)

[42] (0.006530+0.003042j)

[43] (-0.019067+0.025972j)

[44] (0.002945+-0.045785j)

[45] (0.010391+0.040381j)

[46] (-0.018414+-0.019886j)

[47] (0.010679+0.007567j)

[48] (0.014649+-0.022715j)

[49] (-0.007632+0.028023j)

[50] (-0.004731+-0.005551j)

[51] (0.000074+-0.000718j)

[52] (-0.000791+-0.000904j)

[53] (0.000014+-0.000019j)

[54] (0.000344+0.000090j)

[55] (0.000134+-0.000584j)

[56] (-0.000264+0.000585j)

[57] (-0.000724+-0.000490j)

[58] (0.001307+-0.000154j)

[59] (-0.001079+0.000291j)

[60] (0.000548+-0.000334j)

[61] (-0.000573+0.000041j)

[62] (0.000840+-0.000249j)

[63] (-0.000619+0.000665j)

[64] (-0.000148+-0.000633j)

[65] (0.000158+0.000457j)

[66] (0.000138+-0.000554j)

[67] (0.000081+0.000580j)

[68] (-0.000484+-0.000325j)

[69] (0.000552+-0.000122j)

[70] (-0.000070+0.000219j)

[71] (-0.000362+-0.000100j)

[72] (0.000310+-0.000062j)

[73] (0.000635+0.000270j)

[74] (-0.001663+-0.000394j)

[75] (0.001318+0.000141j)

[76] (-0.000177+0.000009j)

[77] (-0.000646+-0.000014j)

[78] (0.000624+0.000356j)

[79] (-0.000049+-0.000515j)

[80] (-0.000366+-0.000084j)

[81] (0.000828+0.000682j)

[82] (-0.001138+-0.000252j)

[83] (0.000686+-0.000317j)

[84] (-0.000067+0.000474j)

[85] (-0.000097+-0.000849j)

[86] (0.000413+0.001005j)

[87] (-0.000761+-0.000557j)

[88] (0.000237+0.000295j)

[89] (0.000096+-0.000673j)

[90] (0.000482+0.000729j)

[91] (-0.000311+-0.000147j)

[92] (-0.000463+-0.000385j)

[93] (0.000049+0.000497j)

[94] (0.000472+-0.000785j)

[95] (0.000007+0.001097j)

[96] (0.000009+-0.000468j)

[97] (-0.000771+0.000036j)

[98] (0.000657+-0.000847j)

[99] (0.000456+0.001364j)

[100] (-0.001066+-0.000980j)

[101] (0.000792+0.000747j)

[102] (-0.000536+-0.000571j)

[103] (0.000696+-0.000112j)

[104] (-0.000424+0.000539j)

[105] (-0.000023+-0.000251j)

[106] (0.000105+-0.000071j)

[107] (-0.000341+0.000353j)

[108] (0.000462+-0.001015j)

[109] (-0.000282+0.001091j)

[110] (0.000073+-0.000221j)

[111] (0.000250+-0.000085j)

[112] (-0.000258+-0.000122j)

[113] (-0.000355+-0.000028j)

[114] (0.001097+0.000032j)

[115] (-0.001402+0.000154j)

[116] (0.001382+0.000325j)

[117] (-0.001009+-0.001084j)

[118] (0.000305+0.000141j)

[119] (-0.000007+0.001139j)

[120] (0.000040+-0.000427j)

[121] (-0.000253+-0.000659j)

[122] (0.000403+0.000886j)

[123] (-0.000065+-0.000793j)

[124] (-0.000628+0.000475j)

[125] (0.001202+-0.000259j)

[126] (-0.000712+0.000480j)

[127] (0.000087+-0.000369j)

[128] (-0.000109+0.000000j) //直流分量

[129] (0.000087+0.000369j)

[130] (-0.000712+-0.000480j)

[131] (0.001202+0.000259j)

[132] (-0.000628+-0.000475j)

[133] (-0.000065+0.000793j)

[134] (0.000403+-0.000886j)

[135] (-0.000253+0.000659j)

[136] (0.000040+0.000427j)

[137] (-0.000007+-0.001139j)

[138] (0.000305+-0.000141j)

[139] (-0.001009+0.001084j)

[140] (0.001382+-0.000325j)

[141] (-0.001402+-0.000154j)

[142] (0.001097+-0.000032j)

[143] (-0.000355+0.000028j)

[144] (-0.000258+0.000122j)

[145] (0.000251+0.000085j)

[146] (0.000073+0.000221j)

[147] (-0.000282+-0.001091j)

[148] (0.000462+0.001015j)

[149] (-0.000341+-0.000353j)

[150] (0.000105+0.000071j)

[151] (-0.000023+0.000251j)

[152] (-0.000424+-0.000539j)

[153] (0.000696+0.000112j)

[154] (-0.000536+0.000571j)

[155] (0.000792+-0.000747j)

[156] (-0.001066+0.000980j)

[157] (0.000456+-0.001364j)

[158] (0.000657+0.000847j)

[159] (-0.000771+-0.000036j)

[160] (0.000009+0.000468j)

[161] (0.000007+-0.001097j)

[162] (0.000472+0.000785j)

[163] (0.000049+-0.000497j)

[164] (-0.000463+0.000385j)

[165] (-0.000311+0.000147j)

[166] (0.000482+-0.000729j)

[167] (0.000096+0.000673j)

[168] (0.000237+-0.000295j)

[169] (-0.000761+0.000557j)

[170] (0.000413+-0.001005j)

[171] (-0.000097+0.000849j)

[172] (-0.000067+-0.000474j)

[173] (0.000686+0.000317j)

[174] (-0.001138+0.000252j)

[175] (0.000828+-0.000682j)

[176] (-0.000366+0.000084j)

[177] (-0.000049+0.000515j)

[178] (0.000624+-0.000356j)

[179] (-0.000646+0.000014j)

[180] (-0.000177+-0.000009j)

[181] (0.001318+-0.000141j)

[182] (-0.001663+0.000394j)

[183] (0.000635+-0.000270j)

[184] (0.000310+0.000062j)

[185] (-0.000362+0.000100j)

[186] (-0.000070+-0.000219j)

[187] (0.000552+0.000122j)

[188] (-0.000484+0.000325j)

[189] (0.000081+-0.000580j)

[190] (0.000138+0.000554j)

[191] (0.000158+-0.000457j)

[192] (-0.000148+0.000633j)

[193] (-0.000619+-0.000665j)

[194] (0.000840+0.000249j)

[195] (-0.000573+-0.000041j)

[196] (0.000548+0.000334j)

[197] (-0.001079+-0.000291j)

[198] (0.001307+0.000154j)

[199] (-0.000724+0.000490j)

[200] (-0.000264+-0.000585j)

[201] (0.000134+0.000584j)

[202] (0.000344+-0.000090j)

[203] (0.000014+0.000019j)

[204] (-0.000791+0.000904j)

[205] (0.000074+0.000718j)

[206] (-0.004731+0.005551j)

[207] (-0.007631+-0.028023j)

[208] (0.014648+0.022715j)

[209] (0.010679+-0.007567j)

[210] (-0.018414+0.019886j)

[211] (0.010392+-0.040381j)

[212] (0.002945+0.045785j)

[213] (-0.019067+-0.025972j)

[214] (0.006530+-0.003042j)

[215] (0.021826+-0.018984j)

[216] (-0.000071+0.056523j)

[217] (-0.022648+-0.023224j)

[218] (0.003857+-0.003912j)

[219] (0.000807+-0.000773j)

[220] (0.000258+0.000051j)

[221] (0.001116+-0.000584j)

[222] (-0.000503+-0.000532j)

[223] (0.000024+0.000142j)

[224] (-0.000126+0.000314j)

[225] (0.000907+-0.000340j)

[226] (-0.000620+0.000187j)

[227] (0.000429+0.000058j)

[228] (-0.000077+-0.000429j)

[229] (-0.000985+0.000131j)

[230] (0.001250+0.000179j)

[231] (0.000185+-0.000019j)

[232] (-0.000790+-0.000218j)

[233] (0.000449+-0.000111j)

[234] (-0.000189+0.000112j)

[235] (-0.000256+0.000116j)

[236] (0.000698+-0.000222j)

[237] (-0.000244+0.000012j)

[238] (0.000025+0.000228j)

[239] (-0.000673+-0.001001j)

[240] (0.000621+0.001286j)

[241] (0.001159+-0.001058j)

[242] (-0.001273+-0.000464j)

[243] (0.000373+0.000256j)

[244] (0.000990+0.000215j)

[245] (0.000186+-0.000361j)

[246] (0.001527+-0.002011j)

[247] (0.001611+-0.004286j)

[248] (0.003740+0.042136j)

[249] (-0.005668+-0.038893j)

[250] (-0.016804+-0.000179j)

[251] (0.003737+-0.002048j)

[252] (0.009356+0.005058j)

[253] (0.008954+0.001403j)

[254] (-0.022870+0.002839j)

[255] (0.023277+-0.005782j)

注:

(1)实数FFT的运算结果得到复数序列

(2)第0个和第FRAME_LEN/2个是直流分量,其余的结果具有“共轭对称性”,即DFT的共轭对称性:X(m)=(N-m)

(3)注意运算结果的前129个数据,要与下文的libsora.stft()的结果做对比

根据实数的FFT结果具有“共轭对称性”的性质,可以优化FFT计算算法,将大大减小运算量和存储空间,一般来说像Matlab或者Python都有实数FFT计算的API,比如做256个点的FFT,只输出129个点的数据即可(没必要返回冗余数据),。为方便理解,这里采用的是复数的FFT算法。测试代码中,个人实现的API简单说明如下:

/*

float dataR[]:时域上,输入序列的实部;计算结束,变成频域上频点的实部

float dataR[]:时域上,输入序列的虚部(都是0);计算结束,变成频域上频点的虚部

float dataA[]:运算结果序列的幅值。

int N:FFT序列的长度

int M:FFT序列的阶数

*/

void FFT(float dataR[], float dataI[], float dataA[], int N, int M);

2.2 librosa的短时傅里叶变正换实现

用相同的数据源,由于librosa.stft()默认加的是汉宁窗,这里就没必要先进行计算。

2.2.1 libsora.stft()的分帧机制

(1) librosa.stft输出的帧数比正常计算的帧数多一帧,它分帧策略的准则是中心对齐的,即分帧点位于该帧的中心,首尾帧之外都有半个帧长度的padding。而padding部分使用0数据填充。

(2) 输出帧数的计算公式:signal_length/hop_length + 1

例:一帧是256个点,帧移取一半,也就是128,那么折叠的部分就是256-128=128。

正常的分帧方法可分为两个帧,第二帧的后半部分用0填充,或者一般来说,最后一帧可以直接舍弃。如下图:

 而librosa的做法是会在数据的头部和尾部增加半个帧长度的填充”,再进行分帧,如下图:

输入的数据:data=dat1+dat2

第一帧数据:128个0+dat1

第二帧数据:data=dat1+dat2

第三帧数据:dat2+128个0

每次的傅里叶变换都是256个点的输入。

2.2.2 测试代码

文件:libsora_test.py

import librosa
from librosa.core.spectrum import amplitude_to_db
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
dat_r = np.array([
0.000214,
0.000122,
-0.000061,
0.000275,
0.000092,
0.000336,
0.000153,
-0.000092,
0.000031,
0.000305,
0.000641,
0.000458,
0.000305,
0.000153,
0.000397,
0.000732,
0.000885,
0.000580,
0.000427,
0.000397,
0.000641,
0.001190,
0.001282,
0.000977,
0.000336,
0.000458,
0.001007,
0.001617,
0.001465,
0.000824,
0.000275,
0.000366,
0.001007,
0.001282,
0.000885,
0.000122,
-0.000336,
-0.000122,
0.000336,
0.000275,
-0.000153,
-0.000824,
-0.000916,
-0.000580,
-0.000519,
-0.000763,
-0.001099,
-0.001221,
-0.001007,
-0.000580,
-0.000793,
-0.000885,
-0.001038,
-0.000580,
-0.000275,
-0.000214,
-0.000549,
-0.000610,
-0.000061,
0.000702,
0.001190,
0.000763,
0.000305,
0.000275,
0.001068,
0.001923,
0.001953,
0.001190,
0.000488,
0.000519,
0.001251,
0.001740,
0.001282,
0.000397,
-0.000183,
0.000000,
0.000214,
0.000305,
-0.000092,
-0.000458,
-0.000732,
-0.000610,
-0.000671,
-0.000916,
-0.000946,
-0.000824,
-0.000702,
-0.001068,
-0.000977,
-0.001190,
-0.000671,
-0.000244,
-0.000122,
-0.000580,
-0.000854,
-0.000519,
0.000153,
0.000641,
0.000671,
0.000214,
-0.000122,
0.000336,
0.000732,
0.000702,
0.000397,
0.000122,
0.000122,
0.000275,
0.000000,
-0.000458,
-0.000580,
-0.000275,
0.000092,
-0.000244,
-0.001373,
-0.001892,
-0.001465,
-0.000153,
0.000214,
-0.000641,
-0.002533,
-0.002808,
-0.001526,
0.000549,
0.000946,
-0.000824,
-0.002594,
-0.002625,
-0.000427,
0.001678,
0.001587,
-0.000397,
-0.002075,
-0.001526,
0.000549,
0.002014,
0.001740,
-0.000122,
-0.001678,
-0.000916,
0.000610,
0.001556,
0.000977,
-0.000580,
-0.001251,
-0.000854,
-0.000183,
0.000214,
-0.000031,
-0.000671,
-0.001007,
-0.001221,
-0.000916,
-0.000824,
-0.000427,
-0.000549,
-0.000732,
-0.000610,
-0.000854,
-0.000671,
-0.000458,
-0.000183,
0.000031,
0.000275,
0.000427,
-0.000092,
-0.000397,
0.000000,
0.000793,
0.001526,
0.001465,
0.000122,
-0.001068,
-0.000854,
0.000946,
0.002472,
0.002014,
-0.000488,
-0.002350,
-0.002075,
0.000702,
0.002686,
0.001801,
-0.001526,
-0.003662,
-0.002472,
0.000793,
0.002747,
0.001740,
-0.001251,
-0.002991,
-0.001648,
0.001160,
0.003143,
0.002289,
0.000244,
-0.000916,
-0.000305,
0.001526,
0.002960,
0.002808,
0.002289,
0.001221,
0.000092,
0.000427,
0.001404,
0.003021,
0.003479,
0.001709,
-0.001068,
-0.002502,
-0.001007,
0.001831,
0.002960,
0.000427,
-0.003510,
-0.005157,
-0.002930,
0.000580,
0.001648,
-0.001038,
-0.004486,
-0.005463,
-0.002991,
-0.000122,
0.000885,
-0.000488,
-0.002045,
-0.002289,
-0.001129,
0.000214,
0.001343,
0.002441,
0.003448,
0.002991,
0.001282,
0.000153,
0.002014,
0.006134,
0.008820,
0.006439,
0.000793,
-0.002625,
0.000488,
0.007111,
0.010132,
0.004669,
-0.004791,
-0.009033,
-0.004028,
0.004089,
0.006104,
-0.002228,
-0.013214,
-0.016327,
-0.009583,
])
res = librosa.stft(dat_r, n_fft=256, hop_length=128, win_length=256)
print("shape-res:", res.shape)
print("row-res:", res.shape[0]) #行数
print("col-res:", res.shape[1]) #列数
#np.savetxt('dat_r_fft.txt', res, fmt="%f") #保存结果矩阵(复数矩阵,a+bi的形式)
#np.savetxt('dat_r_fft.txt', np.real(res), fmt="%f") #保存每一帧的实部
#np.savetxt('dat_r_fft.txt', np.imag(res), fmt="%f") #保存每一帧的虚部
lis0 = []
lis1 = []
lis2 = []
for i in range(res.shape[0]):
lis0.append(np.real(res[i][0])) #取第一帧的实数部分(结果矩阵的第一列数据)
lis1.append(np.real(res[i][1])) #取第二帧的实数部分(结果矩阵的第二列数据)
lis2.append(np.real(res[i][2])) #取第三帧的实数部分(结果矩阵的第三列数据)
np.savetxt('res_fft_0.txt', lis0, fmt="%f")
np.savetxt('res_fft_1.txt', lis1, fmt="%f")
np.savetxt('res_fft_2.txt', lis2, fmt="%f")

2.2.3 运行结果分析

>>python librosa_test.py

shape-res: (129, 3)  #返回的矩阵大小:129行 x 3列,每一列就是一帧数据

#分成了三帧语音进行处理,每一帧是256个采样点,但是FFT的输

#出只保留了129个数据,没有输出冗余数据。--实数FFT的实现

row-res: 129

col-res: 3

为方便对比数据,将每一帧的运算结果的实数部分保存到txt文本中。

对比第二帧的结果,如下:可发现前129个数据近似相等[自己写的复数FFT算法有计算精度上的差异]。

 同样可以对比验证,第一和第三帧的FFT结果,从而证实librosa的分帧机制。

2.3 librosa的短时傅里叶逆变换实现

对应的API是:librosa.istft

参数一致即可。逆变换会根据正变换的规则,处理重叠部分,还原数据帧。测试代码如下:

res = librosa.stft(dat_r, n_fft=256, hop_length=128, win_length=256)

……

ires = librosa.istft(res, n_fft=256, hop_length=128, win_length=256)

np.savetxt('ires.txt', ires, fmt="%f")

对比结果,和输入序列数据是一致的。

3. 附录:librosa官网

Core IO and DSP — librosa 0.9.2 documentation

最后

以上就是可耐小霸王为你收集整理的librosa的短时傅里叶实现librosa.stft()1. API参数解析2. 分帧机制3. 附录:librosa官网的全部内容,希望文章能够帮你解决librosa的短时傅里叶实现librosa.stft()1. API参数解析2. 分帧机制3. 附录:librosa官网所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(74)

评论列表共有 0 条评论

立即
投稿
返回
顶部