我是靠谱客的博主 优雅电脑,最近开发中收集的这篇文章主要介绍麦克风阵列仿真环境的搭建,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1. 引言

  之前,我在语音增强一文中,提到了有关麦克风阵列语音增强的介绍,当然,麦克风阵列能做的东西远远不只是在语音降噪上的应用,它还可以用来做声源定位、声源估计、波束形成、回声抑制等。个人认为,麦克风阵列在声源定位和波束形成(多指抑制干扰语音方面)的优势是单通道麦克风算法无法比拟的。因为,利用多麦克风以后,就会将空间信息考虑到算法中,这样就特别适合解决一些与空间相关性很强的语音处理问题。

  然而,在做一些麦克风阵列相关的算法研究的时候,最先遇到的问题就是:实验环境的搭建。很多做麦克风阵列的爱好者并没有实际的硬件实验环境,这也就成了很多人进行麦克风阵列入门的难题。这里,我要分享的是爱丁堡大学语音实验室开源的基于MATLAB的麦克风阵列实验仿真环境。利用该仿真环境,我们就可以随意的设置房间的大小,混响程度,声源方向以及噪声等基本参数,然后得到我们想要的音频文件去测试你自己相应的麦克风阵列算法。

2. 代码介绍

  原始的代码被我加以修改,也是为了更好的运行,如果有兴趣的话,大家还可以参考爱丁堡大学最初的源码,并且我也上传到我的CSDN码云上了,链接是:https://gitee.com/wind_hit/Microphone-Array-Simulation-Environment。 这套MATLAB代码的主函数是multichannelSignalGenerator(),具体如下:

function [mcSignals,setup] = multichannelSignalGenerator(setup)


%-----------------------------------------------------------------------
%  Producing the multi_noisy_signals for Mic array Beamforming.
% 
%  Usage:  multichannelSignalGenerator(setup)
%         
%	setup.nRirLength : The length of Room Impulse Response Filter
%	setup.hpFilterFlag  : use 'false' to disable high-pass filter, the high-%pass filter is enabled by default
%	setup.reflectionOrder : reflection order, default is -1, i.e. maximum order.
%	setup.micType : [omnidirectional, subcardioid, cardioid, hypercardioid, bidirectional], default is omnidirectional.
%           
%	setup.nSensors : The numbers of the Mic
%	setup.sensorDistance : The distance between the adjacent Mics (m)
%	setup.reverbTime : The reverberation time of room
%	setup.speedOfSound : sound velocity (m/s)
%
%	setup.noiseField : Two kinds of Typical noise field, 'spherical' and 'cylindrical'
%	setup.sdnr : The target mixing snr for diffuse noise and clean siganl.
%	setup.ssnr : The approxiated mixing snr for sensor noise and clean siganl.
%
%	setup.roomDim : 1 x 3 array specifying the (x,y,z) coordinates of the room (m).           
%	setup.micPoints : 3 x M array, the rows specifying the (x,y,z) coordinates of the mic postions (m). 
%	setup.srcPoint  : 3 x M array, the rows specifying the (x,y,z) coordinates of the  audio source postion (m). 
%
%	srcHeight : The height of target audio source
%	arrayHeight : The height of mic array
%
%	arrayCenter : The Center Postion of mic array 
%
%	arrayToSrcDistInt :The distance between the array and audio source on the xy axis
%
%			
%
%
%         
%
%  How To Use : JUST RUN
%
%  
%   
% Code From: Audio analysis Lab of Aalborg University (Website: https://audio.create.aau.dk/),
%            slightly modified by Wind at Harbin Institute  of Technology, Shenzhen, in 2018.3.24
%
% Copyright (C) 1989, 1991 Free Software Foundation, Inc.
%-------------------------------------------------------------------------



addpath([cd,'..rirGen']);

%-----------------------------------------------initial parameters-----------------------------------

setup.nRirLength = 2048;
setup.hpFilterFlag = 1;
setup.reflectionOrder = -1;
setup.micType = 'omnidirectional';
setup.nSensors = 4;
setup.sensorDistance = 0.05;
setup.reverbTime = 0.1;
setup.speedOfSound = 340;

setup.noiseField = 'spherical';
setup.sdnr = 20;
setup.ssnr = 25;

setup.roomDim = [3;4;3];

srcHeight = 1;
arrayHeight = 1;

arrayCenter = [setup.roomDim(1:2)/2;1];

arrayToSrcDistInt = [1,1];

setup.srcPoint = [1.5;1;1];

setup.micPoints = generateUlaCoords(arrayCenter,setup.nSensors,setup.sensorDistance,0,arrayHeight);


[cleanSignal,setup.sampFreq] = audioread('..datatwoMaleTwoFemale20Seconds.wav');

%---------------------------------------------------initial end----------------------------------------



%-------------------------------algorithm processing--------------------------------------------------

if setup.reverbTime == 0,
    setup.reverbTime = 0.2;
    reflectionOrder = 0;
else
    reflectionOrder = -1;
end

rirMatrix = rir_generator(setup.speedOfSound,setup.sampFreq,setup.micPoints',setup.srcPoint',setup.roomDim',...
    setup.reverbTime,setup.nRirLength,setup.micType,setup.reflectionOrder,[],[],setup.hpFilterFlag);

for iSens = 1:setup.nSensors,
    tmpCleanSignal(:,iSens) = fftfilt(rirMatrix(iSens,:)',cleanSignal);
end
mcSignals.clean = tmpCleanSignal(setup.nRirLength:end,:);
setup.nSamples = length(mcSignals.clean);

mcSignals.clean = mcSignals.clean - ones(setup.nSamples,1)*mean(mcSignals.clean);

%-------produce the microphone recieved clean signals---------------------------------------------

mic_clean1=10*mcSignals.clean(:,1); %Because of the attenuation of the recievd signals,Amplify the signals recieved by Mics with tenfold
mic_clean2=10*mcSignals.clean(:,2);
mic_clean3=10*mcSignals.clean(:,3);
mic_clean4=10*mcSignals.clean(:,4);
audiowrite('mic_clean1.wav' ,mic_clean1,setup.sampFreq);
audiowrite('mic_clean2.wav' ,mic_clean2,setup.sampFreq);
audiowrite('mic_clean3.wav' ,mic_clean3,setup.sampFreq);
audiowrite('mic_clean4.wav' ,mic_clean4,setup.sampFreq);

%----------------------------------end--------------------------------------------------

addpath([cd,'..nonstationaryMultichanNoiseGenerator']);

cleanSignalPowerMeas = var(mcSignals.clean);


mcSignals.diffNoise = generateMultichanBabbleNoise(setup.nSamples,setup.nSensors,setup.sensorDistance,...
    setup.speedOfSound,setup.noiseField);
diffNoisePowerMeas = var(mcSignals.diffNoise);
diffNoisePowerTrue = cleanSignalPowerMeas/10^(setup.sdnr/10);
mcSignals.diffNoise = mcSignals.diffNoise*...
    diag(sqrt(diffNoisePowerTrue)./sqrt(diffNoisePowerMeas));

mcSignals.sensNoise = randn(setup.nSamples,setup.nSensors);
sensNoisePowerMeas = var(mcSignals.sensNoise);
sensNoisePowerTrue = cleanSignalPowerMeas/10^(setup.ssnr/10);
mcSignals.sensNoise = mcSignals.sensNoise*...
    diag(sqrt(sensNoisePowerTrue)./sqrt(sensNoisePowerMeas));

mcSignals.noise = mcSignals.diffNoise + mcSignals.sensNoise;
mcSignals.observed = mcSignals.clean + mcSignals.noise;

%------------------------------processing end-----------------------------------------------------------




%----------------produce the noisy speech of MIc in the specific ervironment sets------------------------

noisy_mix1=10*mcSignals.observed(:,1); %Amplify the signals recieved by Mics with tenfold
noisy_mix2=10*mcSignals.observed(:,2);
noisy_mix3=10*mcSignals.observed(:,3);
noisy_mix4=10*mcSignals.observed(:,4);
l1=size(noisy_mix1);
l2=size(noisy_mix2);
l3=size(noisy_mix3);
l4=size(noisy_mix4);
audiowrite('diffused_babble_noise1_20dB.wav' ,noisy_mix1,setup.sampFreq);
audiowrite('diffused_babble_noise2_20dB.wav' ,noisy_mix2,setup.sampFreq);
audiowrite('diffused_babble_noise3_20dB.wav' ,noisy_mix3,setup.sampFreq);
audiowrite('diffused_babble_noise4_20dB.wav' ,noisy_mix4,setup.sampFreq);


%-----------------------------end-------------------------------------------------------------------------

  这个是主函数,直接运行尽可以得到想要的音频文件,但是你需要先给出你的纯净音频文件和噪声音频,分别对应着:multichannelSignalGenerator()函数中的语句:[cleanSignal,setup.sampFreq] = audioread('..datatwoMaleTwoFemale20Seconds.wav'),和generateMultichanBabbleNoise()函数中的语句:[singleChannelData,samplingFreq] = audioread('babble_8kHz.wav')
直接把它们替换成你想要处理的音频文件即可。

  除此之外,还有一些基本实验环境参数设置,包括:麦克风的形状为线性麦克风阵列(该代码只能对线性阵列进行仿真建模,并且还是均匀线性阵列,这个不需要设置);麦克风的类型(micType),有全指向型(omnidirectional),心型指向(cardioid),亚心型指向(subcardioid,不知道咋翻译,请见谅) , 超心型(hypercardioid), 双向型(bidirectional),一般默认是全指向型,如下图1所示;麦克风的数量(nSensors);各麦克风之间的间距(sensorDistance);麦克风阵列的中心位置(arrayCenter),用(x,y,z)坐标来表示;麦克风阵列的高度(arrayHeight),感觉和前面的arrayCenter有所重复,不知道为什么还要设置这么一个参数;目标声源的位置(srcPoint),也是用(x,y,z)坐标来表示;目标声源的高度(srcHeight);麦克风阵列距离目标声源的距离(arrayToSrcDistInt),是在xy平面上的投影距离;房间的大小(roomDim),另外房间的(x,y,z)坐标系如图2所示;房间的混响时间(reverbTime);散漫噪声场的类型(noiseField),分为球形场(spherical)和圆柱形场(cylindrical)。

这里写图片描述
图1 麦克风类型图

这里写图片描述
图二 房间的坐标系

  以上便是整个仿真实验环境的参数配置,虽然只能对均匀线性的麦克风阵列进行实验测试,但是这对满足我们进行线阵阵列算法的测试是有很大的帮助。说到底,这种麦克风阵列环境的音频数据产生方法还是基于数学模型的仿真,并不可能取代实际的硬件实验环境测试,所以要想在工程上实现麦克风阵列的一些算法,仍然避免不了在实际的环境中进行测试。最后,希望分享的这套代码对大家进行麦克风阵列算法的入门提供帮助。

最后

以上就是优雅电脑为你收集整理的麦克风阵列仿真环境的搭建的全部内容,希望文章能够帮你解决麦克风阵列仿真环境的搭建所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(45)

评论列表共有 0 条评论

立即
投稿
返回
顶部