概述
1 简介
从1945年V2导弹面世以来,七十多年间各种导弹层出不穷,从防空导弹到反舰导弹,从弹道导弹到巡航导弹,从亚音速导弹到超音速导弹。这些导弹在大气层中,能按照目标轨迹运动,它们的姿态控制系统至关重要。导弹姿态控制系统关乎导弹飞行成败,导弹姿态控制系统主要有以下两个作用:在大气层内复杂的干扰条件下,保证导弹姿态角偏差始终稳定在系统允许的范围内;根据制导控制指令改变导弹的姿态角,从而使导弹的运动状态发生变化,以此来修正飞行路线,从而令导弹能准确的命中目标。由于导弹在大气层内的运动十分复杂,所以为使问题简单化,总是将导弹的运动分解为铅锤面内的纵向运动和水平面内的侧向运动,将导弹在空间的角运动分解成俯仰、偏航和滚转三个方向的角运动。由于导弹的姿态变化主要由角运动引起,所以导弹的姿态控制系统主要目的就是对导弹的角运动进行控制[1]。
现阶段对大气层内的导弹进行姿态控制,主要要采用以下三种方法:气动力控制,推力矢量控制和喷气反作用控制,三者之间还可以相互配合使用,形成复合控制。喷气反作用控制利用导弹本身携带的气源,或由燃料燃烧或分解产生的高压气体,通过喷气发动机向弹体外喷射,产生反作用力和反作用力矩,从而进行导弹的姿态控制。但是,直接侧向喷流的应用,会使侧喷发动机所产生的高压气流与来流气体相互碰撞,形成激波干扰[2]。从而造成弹体表面的气动压力分布重置,这会使得导弹设计之初所基于的假设条件发生变化,从而会产生很多难以预测造的不确定性因素成导弹姿态发生变化。推力矢量控制是通过改变导弹的主发动机喷出气流的方向,来控制导弹姿态。对于未应用推力矢量技术的导弹,其主发动机喷出气流的方向始终是与导弹的中轴线保持一致的,发动机产生的推力方向也沿导弹轴线向前,此时导弹发动机推力的作用是抵消导弹所受到的阻力或为导弹提供加速的动力。而运用了推力矢量技术的导弹,则通过发动机尾喷管的偏转,使发动机推力方向发生变化,产生侧向的控制力和控制力矩,从而达到控制导弹姿态的目的。其优点是导弹本身姿态的变化不会影响其控制力矩,但是矢量发动机结构过于复杂,成本较高,不适用于普通导弹[3]。气动力控制则根据气动力基本定律以及相对性原,当导弹在大气层内飞行时,就必然会受气动力的作用。气动力可以分解为铅垂面内的升力、水平面内的侧向力和与导弹前进方向相反的阻力,三者作用与导弹上则分别产生滚转力矩、偏航力矩和俯仰力矩使导弹姿态发生变化。基于气动力控制的导弹姿态控制方法具有控制力连续,控制能耗低,结构简单的优点,广泛应用在大气层内飞行的导弹上[4]。
本文研究对象是大气层内飞行的导弹,通过设计基于气动力控制的姿态控制律,使导弹拥有较高的动态响应特性,使导弹在允许时间内以较高精度达到期望姿态。执行机构是安装在弹体尾部的四个空气舵面,通过姿态控制规律计算控制指令,控制舵面的偏转角度,改变空气动力矩,进一步改变姿态,从而实现准确控制导弹姿态的目的。
2 部分代码
clc;clear;
%------------------------定义导弹、大气、地球等固定参数---------------------%
Jx=2.95;Jy=168.2;Jz=168.2;
m=300;S=0.0616;L=0.3;
rho=1.2;g=9.8;
i=10000;
ii=i/10;
t=zeros(1,ii-1);dt=0.001;
H=pi/180;K=180/pi;
%-------------------------定义初始位置参数---------------------------------%
x=zeros(1,i);y=zeros(1,i);z=zeros(1,i);
y(1)=30000;
%-------------------------定义初始速度参数---------------------------------%
V=zeros(1,i);Vx=zeros(1,i);Vy=zeros(1,i);Vz=zeros(1,i);
V(1)=2275;Vx(1)=2275;
%-------------------------定义初始弹道参数---------------------------------%
theta=zeros(1,i);psiv=zeros(1,i);gammav=zeros(1,i);
theta(1)=(40*pi)/180;
%-------------------------定义初始姿态参数---------------------------------%
htheta=zeros(1,i);psi=zeros(1,i);gamma=zeros(1,i);
htheta(1)=40*H;psi(1)=0*H;gamma(1)=5*H;
htheta0=50*H;psi0=10*H;gamma0=0*H;
%---------------------------定义初始舵偏角---------------------------------%
deltax=zeros(1,i);deltay=zeros(1,i);deltaz=zeros(1,i);
%--------------------------定义初始姿态角速度参数---------------------------%
omegax=zeros(1,i);omegay=zeros(1,i);omegaz=zeros(1,i);
%-------------------------定义攻角/侧滑角----------------------------------%
alpha=zeros(1,i);beta=zeros(1,i);dalpha=0;dbeta=0;
%--------------------定义空气动力和空气动力矩-------------------------------%
X=zeros(1,i);Y=zeros(1,i);Z=zeros(1,i);
Mx=zeros(1,i);My=zeros(1,i);Mz=zeros(1,i);
%--------------------------定义控制律参数----------------------------------%
Kpx=-1.5; Kdx=-0.018;
Kpy=-1.5; Kdy=-0.05;
Kpz=-1.8; Kdz=-0.05;
%--------------------------------定义绘图用数组----------------------------%
hthetat=zeros(1,ii-1);psit=zeros(1,ii-1);gammat=zeros(1,ii-1);
omegaxt=zeros(1,ii-1);omegayt=zeros(1,ii-1);omegazt=zeros(1,ii-1);
xt=zeros(1,ii-1);yt=zeros(1,ii-1);zt=zeros(1,ii-1);
Mxt=zeros(1,ii-1);Myt=zeros(1,ii-1);Mzt=zeros(1,ii-1);
deltaxt=zeros(1,ii-1);deltayt=zeros(1,ii-1);deltazt=zeros(1,ii-1);
%------------------------定义气动力、气动力矩的插值矩阵---------------------%
B = [-6,-4,-2,0,2,4,6];
A = [-6;-4;-2;0;2;3;4;6;8;10];
CX = [0.926,0.750,0.636,0.583,0.614,0.722,0.888;0.758,0.596,0.511,0.468,0.489,0.570,0.726;
0.644,0.504,0.426,0.398,0.411,0.487,0.614;0.602,0.477,0.399,0.367,0.390,0.458,0.574;
0.650,0.508,0.428,0.410,0.415,0.502,0.627;0.699,0.547,0.463,0.434,0.449,0.533,0.674;
0.762,0.601,0.512,0.471,0.497,0.585,0.739;0.921,0.749,0.628,0.578,0.613,0.735,0.902;
1.136,0.949,0.817,0.763,0.800,0.934,1.115;1.405,1.212,1.080,1.029,1.067,1.200,1.388];
CY = [-2.694,-2.563,-2.426,-2.351,-2.427,-2.605,-2.686;-1.854,-1.710,-1.642,-1.593,-1.618,-1.711,-1.800;
-0.920,-0.818,-0.802,-0.794,-0.797,-0.798,-0.873;0.034,0.036,0.015,0.033,0.009,0.004,0.031;
0.930,0.894,0.868,0.808,0.802,0.836,0.928;1.373,1.331,1.275,1.190,1.233,1.257,1.340;
1.825,1.751,1.685,1.566,1.633,1.715,1.787;2.704,2.647,2.460,2.344,2.428,2.583,2.677;
3.411,3.458,3.365,3.276,3.312,3.397,3.392;4.175,4.292,4.283,4.241,4.218,4.263,4.181];
3 仿真结果
4 参考文献
[1]黄金阳, 辛长范, 马云建,等. 基于Matlab/FlightGear的导弹飞行姿态与轨迹可视化系统[J]. 导航与控制, 2016, 15(6):5.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
最后
以上就是高挑大神为你收集整理的【运动学】导弹姿态控制含Matlab源码的全部内容,希望文章能够帮你解决【运动学】导弹姿态控制含Matlab源码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复