本次任务选择lightgbm进行建模调参。
这里写目录标题
- 1.关于lightgbm
- 2.代码实现及参数说明
- 2.1建模及训练
- 2.2lightgbm主要参数
- 2.3性能评估
- 2.4模型调参
- 2.5输出结果
1.关于lightgbm
LightGBM 由微软提出,主要用于解决 GDBT 在海量数据中遇到的问题,以便其可以更好更快地用于工业实践中。LightGBM及GDBT都是boosting的方法,即基模型的训练是有顺序的,每轮训练在前一轮训练的基础上进行。
LightGBM针对XGboost在以下几个方面进行优化:
1.单边梯度抽样算法;
2.直方图算法;
3.互斥特征捆绑算法;
4.基于最大深度的 Leaf-wise 的垂直生长算法;
5.类别特征最优分割;
6.特征并行和数据并行;
7.缓存优化。
占用内存更小,计算代价更低。
2.代码实现及参数说明
2.1建模及训练
1
2
3
4
5
6
7
8
9import pandas as pd import numpy as np from sklearn.metrics import f1_score import os import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore")
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54#优化内存 def reduce_mem_usage(df): start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df # 读取数据 data = pd.read_csv('data/train.csv') # 简单预处理 data_list = [] for items in data.values: data_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]]) data = pd.DataFrame(np.array(data_list)) data.columns = ['id'] + ['s_'+str(i) for i in range(len(data_list[0])-2)] + ['label'] data = reduce_mem_usage(data) #F1-score def f1_score_vali(preds, data_vali): labels = data_vali.get_label() preds = np.argmax(preds.reshape(4, -1), axis=0) score_vali = f1_score(y_true=labels, y_pred=preds, average='macro') return 'f1_score', score_vali, True
lgb建模
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30from sklearn.model_selection import train_test_split import lightgbm as lgb # 数据集划分 X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.4) train_matrix = lgb.Dataset(X_train_split, label=y_train_split) valid_matrix = lgb.Dataset(X_val, label=y_val) params = { "learning_rate": 0.1, "boosting": 'gbdt', "lambda_l2": 0.1, "max_depth": 15, "num_leaves": 31, "bagging_fraction": 0.8, "feature_fraction": 0.8, "metric": None, "objective": "multiclass", "num_class": 4, "verbose": -1, } """使用训练集数据进行模型训练""" model = lgb.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=1000, verbose_eval=50, early_stopping_rounds=30, feval=f1_score_vali)
2.2lightgbm主要参数
max_depth:树的最大深度,过拟合时应降低此值
feature_fraction:意味着在每次迭代中随机选择的特征的比例
bagging_fraction:每次迭代时用的数据比例,即迭代数据量的指定比例时bagging一次
early_stopping_round:如果一次验证数据的一个度量在最近的early_stopping_round 回合中没有提高,模型将停止训练
lambda:指定正则化0~1,如lambda_l2=0.1,表示采用l2正则化系数为0.1,系数越小正则化程度越高,用来防止过拟合
num_boost_round:迭代次数 通常 100+
learning_rate:学习率,常用 0.1, 0.001, 0.003…
num_leaves :叶子数,默认 31,取值应 <= 2 ^(max_depth)
device:设置cpu 或者 gpu
metric:评价指标设置,mae: mean absolute error , mse: mean squared error ,binary_logloss: loss for binary classification ,multi_logloss: loss for multi classification
Task:数据的用途, train 或者 predict
application模型的用途 ,regression: 回归,binary: 二分类,multiclass: 多分类
boosting:要用的算法 gbdt, rf: random forest, dart: Dropouts meet Multiple Additive Regression Trees, goss: Gradient-based One-Side Sampling
2.3性能评估
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration) preds = np.argmax(val_pre_lgb, axis=1) score = f1_score(y_true=y_val, y_pred=preds, average='macro') print('未调参前lightgbm单模型在验证集上的f1:{}'.format(score)) """使用lightgbm 5折交叉验证进行建模预测""" cv_scores = [] for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)): print('************************************ {} ************************************'.format(str(i+1))) X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index] train_matrix = lgb.Dataset(X_train_split, label=y_train_split) valid_matrix = lgb.Dataset(X_val, label=y_val) model = lgb.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=1000, verbose_eval=100, early_stopping_rounds=20, feval=f1_score_vali) val_pred = model.predict(X_val, num_iteration=model.best_iteration) val_pred = np.argmax(val_pred, axis=1) cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro')) print(cv_scores) print("lgb_scotrainre_list:{}".format(cv_scores)) print("lgb_score_mean:{}".format(np.mean(cv_scores))) print("lgb_score_std:{}".format(np.std(cv_scores)))
2.4模型调参
采用贝叶斯调参的方法进行调试
贝叶斯调参的主要思想是:给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。
主要步骤:定义优化函数(rf_cv)
建立模型
定义待优化的参数
得到优化结果,并返回要优化的分数指标
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35from sklearn.model_selection import cross_val_score from sklearn.metrics import make_scorer """定义优化函数""" def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction,min_data_in_leaf,lambda_l2): # 建立模型 model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', objective='multiclass', num_class=4, learning_rate=0.1, num_leaves=int(num_leaves), max_depth=int(max_depth), bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2), min_data_in_leaf=int(min_data_in_leaf), lambda_l2=lambda_l2 ) f1 = make_scorer(f1_score, average='micro') val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring=f1).mean() return val from bayes_opt import BayesianOptimization """定义优化参数""" bayes_lgb = BayesianOptimization( rf_cv_lgb, { 'num_leaves':(31, 200), 'max_depth':(4, 20), 'bagging_fraction':(0.5, 1), 'feature_fraction':(0.5, 1), 'min_data_in_leaf':(10,100), 'lambda_l2':(0.01, 0.5) } ) """开始优化""" bayes_lgb.maximize(n_iter=10) bayes_lgb.max
采用新参数进行训练:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24params = { "learning_rate": 0.1, "boosting": 'gbdt', "lambda_l2": 0.17,#越小正则化程度越高 "max_depth": 18, "num_leaves": 119, "bagging_fraction": 0.93, "feature_fraction": 0.57, "metric": None, "objective": "multiclass", "num_class": 4, "verbose": -1, "min_data_in_leaf": 60 } """使用训练集数据进行模型训练""" model = lgb.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=1000, verbose_eval=50, early_stopping_rounds=30, feval=f1_score_vali)
比较未优化的模型,f1分数虽然提升不大,但是多分类log损失函数明显降低
2.5输出结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14temp=pd.DataFrame(test_pred) result=pd.read_csv('sample_submit.csv') def ff(x): if x<0.3: x=0 if x>0.7: x=1 return x result['label_0']=temp[0].apply(ff) result['label_1']=temp[1].apply(ff) result['label_2']=temp[2].apply(ff) result['label_3']=temp[3].apply(ff) print(result)
最终成绩
比优化之前低了大概30分
最后
以上就是含糊银耳汤最近收集整理的关于心跳信号分类预测(四)建模与调参1.关于lightgbm2.代码实现及参数说明的全部内容,更多相关心跳信号分类预测(四)建模与调参1内容请搜索靠谱客的其他文章。
发表评论 取消回复