我是靠谱客的博主 老迟到野狼,最近开发中收集的这篇文章主要介绍内核源码——汇编阶段的head.S文件前言一、分析kernel的链接脚本二、分析head.S文件,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

以下内容源于朱有鹏嵌入式课程的学习,如有侵权,请告知删除。

前言

1、内容总结

汇编阶段,或者说内核引导阶段,主要是arch/arm/kernel/head.S文件,主要完成以下内容:

(1)校验启动合法性(CPU ID,机器码,uboot给内核的传参格式等)。

(2)建立段式映射的页表,并开启MMU以方便使用内存。

(3)构建C运行环境,跳入C阶段。

2、head.S文件代码

/*
 *  linux/arch/arm/kernel/head.S
 *
 *  Copyright (C) 1994-2002 Russell King
 *  Copyright (c) 2003 ARM Limited
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  Kernel startup code for all 32-bit CPUs
 */
#include <linux/linkage.h>
#include <linux/init.h>

#include <asm/assembler.h>
#include <asm/domain.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/memory.h>
#include <asm/thread_info.h>
#include <asm/system.h>

#if (PHYS_OFFSET & 0x001fffff)
#error "PHYS_OFFSET must be at an even 2MiB boundary!"
#endif

#define KERNEL_RAM_VADDR	(PAGE_OFFSET + TEXT_OFFSET)
#define KERNEL_RAM_PADDR	(PHYS_OFFSET + TEXT_OFFSET)


/*
 * swapper_pg_dir is the virtual address of the initial page table.
 * We place the page tables 16K below KERNEL_RAM_VADDR.  Therefore, we must
 * make sure that KERNEL_RAM_VADDR is correctly set.  Currently, we expect
 * the least significant 16 bits to be 0x8000, but we could probably
 * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.
 */
#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
#error KERNEL_RAM_VADDR must start at 0xXXXX8000
#endif

	.globl	swapper_pg_dir
	.equ	swapper_pg_dir, KERNEL_RAM_VADDR - 0x4000

	.macro	pgtbl, rd
	ldr	rd, =(KERNEL_RAM_PADDR - 0x4000)
	.endm

#ifdef CONFIG_XIP_KERNEL
#define KERNEL_START	XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
#define KERNEL_END	_edata_loc
#else
#define KERNEL_START	KERNEL_RAM_VADDR
#define KERNEL_END	_end
#endif

/*
 * Kernel startup entry point.
 * ---------------------------
 *
 * This is normally called from the decompressor code.  The requirements
 * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
 * r1 = machine nr, r2 = atags pointer.
 *
 * This code is mostly position independent, so if you link the kernel at
 * 0xc0008000, you call this at __pa(0xc0008000).
 *
 * See linux/arch/arm/tools/mach-types for the complete list of machine
 * numbers for r1.
 *
 * We're trying to keep crap to a minimum; DO NOT add any machine specific
 * crap here - that's what the boot loader (or in extreme, well justified
 * circumstances, zImage) is for.
 */
	__HEAD
ENTRY(stext)
	setmode	PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ ensure svc mode
						@ and irqs disabled
	mrc	p15, 0, r9, c0, c0		@ get processor id
	bl	__lookup_processor_type		@ r5=procinfo r9=cpuid
	movs	r10, r5				@ invalid processor (r5=0)?
	beq	__error_p			@ yes, error 'p'
	bl	__lookup_machine_type		@ r5=machinfo
	movs	r8, r5				@ invalid machine (r5=0)?
	beq	__error_a			@ yes, error 'a'
	bl	__vet_atags
	bl	__create_page_tables

	/*
	 * The following calls CPU specific code in a position independent
	 * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
	 * xxx_proc_info structure selected by __lookup_machine_type
	 * above.  On return, the CPU will be ready for the MMU to be
	 * turned on, and r0 will hold the CPU control register value.
	 */
	ldr	r13, __switch_data		@ address to jump to after
						@ mmu has been enabled
	adr	lr, BSYM(__enable_mmu)		@ return (PIC) address
 ARM(	add	pc, r10, #PROCINFO_INITFUNC	)
 THUMB(	add	r12, r10, #PROCINFO_INITFUNC	)
 THUMB(	mov	pc, r12				)
ENDPROC(stext)

#if defined(CONFIG_SMP)
ENTRY(secondary_startup)
	/*
	 * Common entry point for secondary CPUs.
	 *
	 * Ensure that we're in SVC mode, and IRQs are disabled.  Lookup
	 * the processor type - there is no need to check the machine type
	 * as it has already been validated by the primary processor.
	 */
	setmode	PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9
	mrc	p15, 0, r9, c0, c0		@ get processor id
	bl	__lookup_processor_type
	movs	r10, r5				@ invalid processor?
	moveq	r0, #'p'			@ yes, error 'p'
	beq	__error

	/*
	 * Use the page tables supplied from  __cpu_up.
	 */
	adr	r4, __secondary_data
	ldmia	r4, {r5, r7, r12}		@ address to jump to after
	sub	r4, r4, r5			@ mmu has been enabled
	ldr	r4, [r7, r4]			@ get secondary_data.pgdir
	adr	lr, BSYM(__enable_mmu)		@ return address
	mov	r13, r12			@ __secondary_switched address
 ARM(	add	pc, r10, #PROCINFO_INITFUNC	) @ initialise processor
						  @ (return control reg)
 THUMB(	add	r12, r10, #PROCINFO_INITFUNC	)
 THUMB(	mov	pc, r12				)
ENDPROC(secondary_startup)

	/*
	 * r6  = &secondary_data
	 */
ENTRY(__secondary_switched)
	ldr	sp, [r7, #4]			@ get secondary_data.stack
	mov	fp, #0
	b	secondary_start_kernel
ENDPROC(__secondary_switched)

	.type	__secondary_data, %object
__secondary_data:
	.long	.
	.long	secondary_data
	.long	__secondary_switched
#endif /* defined(CONFIG_SMP) */



/*
 * Setup common bits before finally enabling the MMU.  Essentially
 * this is just loading the page table pointer and domain access
 * registers.
 */
__enable_mmu:
#ifdef CONFIG_ALIGNMENT_TRAP
	orr	r0, r0, #CR_A
#else
	bic	r0, r0, #CR_A
#endif
#ifdef CONFIG_CPU_DCACHE_DISABLE
	bic	r0, r0, #CR_C
#endif
#ifdef CONFIG_CPU_BPREDICT_DISABLE
	bic	r0, r0, #CR_Z
#endif
#ifdef CONFIG_CPU_ICACHE_DISABLE
	bic	r0, r0, #CR_I
#endif
	mov	r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | 
		      domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | 
		      domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | 
		      domain_val(DOMAIN_IO, DOMAIN_CLIENT))
	mcr	p15, 0, r5, c3, c0, 0		@ load domain access register
	mcr	p15, 0, r4, c2, c0, 0		@ load page table pointer
	b	__turn_mmu_on
ENDPROC(__enable_mmu)

/*
 * Enable the MMU.  This completely changes the structure of the visible
 * memory space.  You will not be able to trace execution through this.
 * If you have an enquiry about this, *please* check the linux-arm-kernel
 * mailing list archives BEFORE sending another post to the list.
 *
 *  r0  = cp#15 control register
 *  r13 = *virtual* address to jump to upon completion
 *
 * other registers depend on the function called upon completion
 */
	.align	5
__turn_mmu_on:
	mov	r0, r0
	mcr	p15, 0, r0, c1, c0, 0		@ write control reg
	mrc	p15, 0, r3, c0, c0, 0		@ read id reg
	mov	r3, r3
	mov	r3, r13
	mov	pc, r3
ENDPROC(__turn_mmu_on)


/*
 * Setup the initial page tables.  We only setup the barest
 * amount which are required to get the kernel running, which
 * generally means mapping in the kernel code.
 *
 * r8  = machinfo
 * r9  = cpuid
 * r10 = procinfo
 *
 * Returns:
 *  r0, r3, r6, r7 corrupted
 *  r4 = physical page table address
 */
__create_page_tables:
	pgtbl	r4				@ page table address

	/*
	 * Clear the 16K level 1 swapper page table
	 */
	mov	r0, r4
	mov	r3, #0
	add	r6, r0, #0x4000
1:	str	r3, [r0], #4
	str	r3, [r0], #4
	str	r3, [r0], #4
	str	r3, [r0], #4
	teq	r0, r6
	bne	1b

	ldr	r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags

	/*
	 * Create identity mapping for first MB of kernel to
	 * cater for the MMU enable.  This identity mapping
	 * will be removed by paging_init().  We use our current program
	 * counter to determine corresponding section base address.
	 */
	mov	r6, pc
	mov	r6, r6, lsr #20			@ start of kernel section
	orr	r3, r7, r6, lsl #20		@ flags + kernel base
	str	r3, [r4, r6, lsl #2]		@ identity mapping

	/*
	 * Now setup the pagetables for our kernel direct
	 * mapped region.
	 */
	add	r0, r4,  #(KERNEL_START & 0xff000000) >> 18
	str	r3, [r0, #(KERNEL_START & 0x00f00000) >> 18]!
	ldr	r6, =(KERNEL_END - 1)
	add	r0, r0, #4
	add	r6, r4, r6, lsr #18
1:	cmp	r0, r6
	add	r3, r3, #1 << 20
	strls	r3, [r0], #4
	bls	1b

#ifdef CONFIG_XIP_KERNEL
	/*
	 * Map some ram to cover our .data and .bss areas.
	 */
	orr	r3, r7, #(KERNEL_RAM_PADDR & 0xff000000)
	.if	(KERNEL_RAM_PADDR & 0x00f00000)
	orr	r3, r3, #(KERNEL_RAM_PADDR & 0x00f00000)
	.endif
	add	r0, r4,  #(KERNEL_RAM_VADDR & 0xff000000) >> 18
	str	r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> 18]!
	ldr	r6, =(_end - 1)
	add	r0, r0, #4
	add	r6, r4, r6, lsr #18
1:	cmp	r0, r6
	add	r3, r3, #1 << 20
	strls	r3, [r0], #4
	bls	1b
#endif

	/*
	 * Then map first 1MB of ram in case it contains our boot params.
	 */
	add	r0, r4, #PAGE_OFFSET >> 18
	orr	r6, r7, #(PHYS_OFFSET & 0xff000000)
	.if	(PHYS_OFFSET & 0x00f00000)
	orr	r6, r6, #(PHYS_OFFSET & 0x00f00000)
	.endif
	str	r6, [r0]

#ifdef CONFIG_DEBUG_LL
	ldr	r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
	/*
	 * Map in IO space for serial debugging.
	 * This allows debug messages to be output
	 * via a serial console before paging_init.
	 */
	ldr	r3, [r8, #MACHINFO_PGOFFIO]
	add	r0, r4, r3
	rsb	r3, r3, #0x4000			@ PTRS_PER_PGD*sizeof(long)
	cmp	r3, #0x0800			@ limit to 512MB
	movhi	r3, #0x0800
	add	r6, r0, r3
	ldr	r3, [r8, #MACHINFO_PHYSIO]
	orr	r3, r3, r7
1:	str	r3, [r0], #4
	add	r3, r3, #1 << 20
	teq	r0, r6
	bne	1b
#if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)
	/*
	 * If we're using the NetWinder or CATS, we also need to map
	 * in the 16550-type serial port for the debug messages
	 */
	add	r0, r4, #0xff000000 >> 18
	orr	r3, r7, #0x7c000000
	str	r3, [r0]
#endif
#ifdef CONFIG_ARCH_RPC
	/*
	 * Map in screen at 0x02000000 & SCREEN2_BASE
	 * Similar reasons here - for debug.  This is
	 * only for Acorn RiscPC architectures.
	 */
	add	r0, r4, #0x02000000 >> 18
	orr	r3, r7, #0x02000000
	str	r3, [r0]
	add	r0, r4, #0xd8000000 >> 18
	str	r3, [r0]
#endif
#endif
	mov	pc, lr
ENDPROC(__create_page_tables)
	.ltorg

#include "head-common.S"

一、分析kernel的链接脚本

由内核配置与编译——内核的链接脚本可知,kernel的入口地址在arch/arm/kernel/head.S文件的ENTRY(stext)处。

二、分析head.S文件

1、内核运行的物理地址与虚拟地址

(1)KERNEL_RAM_VADDR(VADDR就是virtual address),这个宏定义了内核运行时的虚拟地址,值为0xC0008000。

(2)KERNEL_RAM_PADDR(PADDR就是physical address),这个宏定义内核运行时的物理地址,值为0x30008000。

(3)因此,内核运行的物理地址是0x30008000,对应的虚拟地址是0xC0008000。

2、内核的真正入口

(1)__HEAD定义了段名为.head.text的段。在/include/linux/init.h文件中,有如下代码:

/* For assembly routines */
#define __HEAD		.section	".head.text","ax" //定义了段名为.head.text的段
#define __INIT		.section	".init.text","ax"
#define __FINIT		.previous

(2)“ENTRY(stext)”表明内核的真正入口。

(3)uboot启动内核后,实际调用zImage前面的那段未经压缩的解压代码,解压代码运行时先将zImage后面的部分解压开,然后再去调用运行真正的内核入口(即这里)。

(4)内核启动需要一定先决条件,这个条件由启动内核的bootloader(比如uboot)来构建保证。

(5)ARM体系中,函数调用时实际是通过寄存器传参的。

  • 函数调用时传参有两种设计:一种是寄存器传参,另一种是栈内存传参。
  • uboot中最后theKernel (0, machid, bd->bi_boot_params);执行内核时,实际把0放入r0中,machid放入到了r1中,bd->bi_boot_params放入到了r2中。
  • ARM的这种处理技巧刚好满足了kernel启动的条件和要求。

(6)此时MMU是关闭的,因此硬件上需要的是物理地址。但是内核是一个整体(zImage)只能被链接到一个地址(不能分散加载),这个链接地址肯定是虚拟地址。因此head.S文件中尚未开启MMU之前的代码必须是位置无关码,而且其中涉及到操作硬件寄存器等时必须使用物理地址。

3、检验CPU_ID与机器码的合法性

分别通过__lookup_processor_type与__lookup_machine_type,校验CPU_ID与机器码的合法性。这两个函数都在arch/arm/kernel/head-common.S文件中。

 __lookup_processor_type函数内容如下:

 __lookup_machine_type函数内容如下:

(1)cp15协处理器的c0寄存器中读取出硬件的CPU ID号,然后调用__lookup_processor_type来进行合法性检验。如果合法则继续启动,如果不合法则停止启动,转向__error_p启动失败。

(2)__lookup_processor_type检验cpu id合法性的方法。内核会维护一个本内核支持的CPU ID号码的数组,然后该函数将从硬件中读取到的cpu id号码和数组中存储的各个id号码依次对比,如果没有一个相等则不合法,如果有一个相等的则合法。

(3)内核启动时设计这个校验,也是为了内核启动的安全性着想。

(4)__lookup_machine_type函数的设计理念和思路和上面校验cpu id的函数一样的,不同之处是本函数校验的是机器码。

4、校验uboot给内核传参的格式

利用__vet_atags函数,对uboot通过tag给内核传参的格式进行校验。

这函数在arch/arm/kernel/head-common.S文件中。

(1)该函数的设计思路和上面2个一样,用来对uboot通过tag给内核传参的格式进行校验。参数包括板子的内存分布memtag、uboot的bootargs等等。

(2)如果uboot给内核传参的格式不对,内核将启动不起来。比如uboot的bootargs设置不正确,则内核可能就会不启动。

5、建立段式页表

利用__create_page_tables函数建立段式页表。

这函数在​arch/arm/kernel/head.S文件​中。

(1)linux内核本身被链接在虚拟地址处,因此kernel希望尽快建立页表并且启动MMU进入虚拟地址工作状态。

(2)kernel建立页表分为2步。

  • 第一步,先建立一个段式页表(1MB为单位的段页表)。段式页表建立过程简单(段式页表1MB一个映射,4GB空间需要4096个页表项,每个页表项4字节,因此一共需要16KB内存来做页表),但不能精细管理内存。上面的函数就是用来建立段式页表的。
  • 第二步,然后建立一个细页表(4kb为单位的细页表),然后启用新的细页表,并废除第一步建立的段式映射页表。

(3)内核启动的早期建立段式页表,并在内核启动早期使用;内核启动的后期再次建立细页表并启用。等内核工作起来后,就只有细页表了。

6、构建C语言运行环境

(1)建立段式页表后进入__switch_data部分,它是一个函数指针数组。

 
 

(2)分析得知下一步要执行__mmap_switched函数。

  • 复制数据段、清除bss段(目的是构建C语言运行环境)。
  • 保存起来cpu id号、机器码、tag传参的首地址。
  • b start_kernel跳转到C语言运行阶段。

最后

以上就是老迟到野狼为你收集整理的内核源码——汇编阶段的head.S文件前言一、分析kernel的链接脚本二、分析head.S文件的全部内容,希望文章能够帮你解决内核源码——汇编阶段的head.S文件前言一、分析kernel的链接脚本二、分析head.S文件所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(45)

评论列表共有 0 条评论

立即
投稿
返回
顶部