概述
文章目录
- 1. 递归
- 2. 归并排序
在学习归并排序之前,我们得先学习一下递归算法
1. 递归
定义:
定义方法时,在方法内部调用方法本身,称之为递归。
public void show() {
System.out.println("aaaa");
show();
}
作用:
它通常把一个大型复杂的问题,层层转换为一个与原问题相似的,规模较小的问题来求解。递归策略只需要少量的
程序就可以描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
注意事项:
在递归中,不能无限制的调用自己,必须要有边界条件,能够让递归结束,因为每一次递归调用都会在栈内存开辟
新的空间,重新执行方法,如果递归的层级太深,很容易造成栈内存溢出。
需求:
请定义一个方法,使用递归完成求N的阶乘;
代码实现:
public class Test {
public static void main(String[] args) throws Exception {
int result = factorial(5);
System.out.println(result);
}
public static int factorial(int n) {
if (n == 1) {
return 1;
}
return n * factorial(n - 1);
}
}
2. 归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子
序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序
表,称为二路归并。
需求:
排序前:{8,4,5,7,1,3,6,2}
排序后:{1,2,3,4,5,6,7,8}
排序原理:
1.尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止。
2.将相邻的两个子组进行合并成一个有序的大组;
3.不断的重复步骤2,直到最终只有一个组为止。
代码实现:
public class Merge {
//归并所需要的辅助数组
private static Comparable[] assist;
/*
比较v元素是否小于w元素
*/
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
}
/*
数组元素i和j交换位置
*/
private static void exch(Comparable[] a, int i, int j) {
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
/*
对数组a中的元素进行排序
*/
public static void sort(Comparable[] a) {
//1.初始化辅助数组assist;
assist = new Comparable[a.length];
//2.定义一个lo变量,和hi变量,分别记录数组中最小的索引和最大的索引;
int lo = 0;
int hi = a.length - 1;
//3.调用sort重载方法完成数组a中,从索引lo到索引hi的元素的排序
sort(a, lo, hi);
}
/*
对数组a中从lo到hi的元素进行排序
*/
private static void sort(Comparable[] a, int lo, int hi) {
//做安全性校验;
if (hi <= lo) {
return;
}
//对lo到hi之间的数据进行分为两个组
int mid = lo + (hi - lo) / 2;// 5,9 mid=7
//分别对每一组数据进行排序
sort(a, lo, mid);
sort(a, mid + 1, hi);
//再把两个组中的数据进行归并
merge(a, lo, mid, hi);
}
/*
对数组中,从lo到mid为一组,从mid+1到hi为一组,对这两组数据进行归并
*/
private static void merge(Comparable[] a, int lo, int mid, int hi) {
//定义三个指针
int i = lo;
int p1 = lo;
int p2 = mid + 1;
//遍历,移动p1指针和p2指针,比较对应索引处的值,找出小的那个,放到辅助数组的对应索引处
while (p1 <= mid && p2 <= hi) {
//比较对应索引处的值
if (less(a[p1], a[p2])) {
assist[i++] = a[p1++];
} else {
assist[i++] = a[p2++];
}
}
//遍历,如果p1的指针没有走完,那么顺序移动p1指针,把对应的元素放到辅助数组的对应索引处
while (p1 <= mid) {
assist[i++] = a[p1++];
}
//遍历,如果p2的指针没有走完,那么顺序移动p2指针,把对应的元素放到辅助数组的对应索引处
while (p2 <= hi) {
assist[i++] = a[p2++];
}
//把辅助数组中的元素拷贝到原数组中
for (int index = lo; index <= hi; index++) {
a[index] = assist[index];
}
}
}
归并排序时间复杂度分析:
归并排序是分治思想的最典型的例子,上面的算法中,对a[lo…hi]进行排序,先将它分为a[lo…mid]和
a[mid+1…hi]两部分,分别通过递归调用将他们单独排序,最后将有序的子数组归并为最终的排序结果。该递归的
出口在于如果一个数组不能再被分为两个子数组,那么就会执行merge进行归并,在归并的时候判断元素的大小
进行排序。
用树状图来描述归并,如果一个数组有8个元素,那么它将每次除以2找最小的子数组,共拆log8次,值为3,所以
树共有3层,那么自顶向下第k层有2k个子数组,每个数组的长度为2(3-k),归并最多需要2^(3-k)次比较。因此每
层的比较次数为 2^k * 2(3-k)=23,那么3层总共为 32^3。假设元素的个数为n,那么使用归并排序拆分的次数为
log2(n),所以共log2(n)层,那么使用log2(n)替换上面32^3中 的3这个层数,最终得出的归并排序的时间复杂度为:
log2(n)* 2^(log2(n))=log2(n)*n,根据大O推导法则,忽略底数,最终归并排序的时间复杂度为O(nlogn);
归并排序的缺点:
需要申请额外的数组空间,导致空间复杂度提升,是典型的以空间换时间的操作。
最后
以上就是现代画板为你收集整理的排序算法之归并排序(Java实现)1. 递归2. 归并排序的全部内容,希望文章能够帮你解决排序算法之归并排序(Java实现)1. 递归2. 归并排序所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复