我是靠谱客的博主 听话蛋挞,最近开发中收集的这篇文章主要介绍【深度学习计算机视觉实战】无人驾驶中的车道线检测,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

本文中使用的函数详细说明可以参考图书《学习OpenCV 4:基于Python的算法实战》,该书内容如下:

1章 OpenCV快速入门;
第2章 图像读写模块imgcodecs;
第3章 核心库模块core;
第4章 图像处理模块imgproc(一);
第5章 图像处理模块imgproc(二);
第6章 可视化模块highgui;
第7章 视频处理模块videoio;
第8章 视频分析模块video;
第9章 照片处理模块photo;
第10章 2D特征模块features2d;
第11章 相机标定与三维重建模块calib3d;
第12章 传统目标检测模块objdetect;
第13章 机器学习模块ml;
第14章 深度神经网络模块dnn

对深度学习计算机视觉的内容深入学习可以参考图书《深度学习计算机视觉实战》,该书包括四个方面的内容。

第一部分:深度学习与计算机视觉的基础介绍(经典网络与算法);
第二部分:模型训练中常用的预处理和后处理图像处理算法介绍;
第三部分:计算机视觉项目实战;
第四部分:基于Tensorflow Lite的模型部署(lite源码讲解、模型量化、模型转换、PC和移动端部署)。

更多学习交流请参考:
在这里插入图片描述

下面介绍车道线检测,先上一下检测结果吧:
在这里插入图片描述
绿色线表示的就是车道线​。
检测代码如下(完整代码可以加群获取或者到公众号“计算机视觉与OpenCV”回复车道线检测获取)​:

# 读取采集的行驶视频
cap = cv.VideoCapture("input.mp4")
while (cap.isOpened()):
    # 获取视频帧
    ret, frame = cap.read()
    # 执行边缘检测并显示结果
    canny = do_canny(frame)
    cv.imshow("canny", canny)
    # 车道线区域分割
    segment = do_segment(canny)
    # 执行霍夫变换检测车道线
    hough = cv.HoughLinesP(segment, 2, np.pi / 180, 100, np.array([]), minLineLength = 100, maxLineGap = 50)
    # 计算车道线
    lines = calculate_lines(frame, hough)
    # 车道线可视化
    lines_visualize = visualize_lines(frame, lines)
    cv.imshow("hough", lines_visualize)
    # 将车道线添加到帧图像上去
    output = cv.addWeighted(frame, 0.9, lines_visualize, 1, 1)
    # 将带有绘制车道线的结果显示
    cv.imshow("output", output)
    # 视频帧的读取间隔为10ms,按下q键退出检测
    if cv.waitKey(10) & 0xFF == ord('q'):
        break
# 资源释放
cap.release()
cv.destroyAllWindows()

边缘检测结果如下:
在这里插入图片描述
通过设置三角形的mask分割分割出来我们感兴趣的检测区域:
在这里插入图片描述
这样就可以得到车道线区域,最后通过霍夫变换得到的车道线如下:
在这里插入图片描述

最后

以上就是听话蛋挞为你收集整理的【深度学习计算机视觉实战】无人驾驶中的车道线检测的全部内容,希望文章能够帮你解决【深度学习计算机视觉实战】无人驾驶中的车道线检测所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(74)

评论列表共有 0 条评论

立即
投稿
返回
顶部