概述
#include <stdio.h>
#include <malloc.h>
int getMaxSum(int *array, int beginPos, int endPos, int *dpArray) {
int MaxBegin = beginPos;
int MaxEnd = beginPos;
int curMax = array[beginPos];
int curMaxAlignRight = array[beginPos];
int curMaxAlignRightBegin = beginPos;
dpArray[beginPos] = curMax;
for (int i = beginPos+1; i <= endPos; i++) {
if (curMaxAlignRight > 0) {
if (array[i] + curMaxAlignRight > curMax) {
curMax = array[i] + curMaxAlignRight;
MaxBegin = curMaxAlignRightBegin;
MaxEnd = i;
} else {
}
curMaxAlignRight = curMaxAlignRight + array[i];
} else {
if (array[i] > curMax) {
curMax = array[i];
MaxBegin = i;
MaxEnd = i;
}
curMaxAlignRight = array[i];
curMaxAlignRightBegin = i;
}
dpArray[i] = curMax;
}
return curMax;
}
int getMaxSumReverse(int *array, int beginPos, int endPos, int *dpArray) {
int MaxBegin = beginPos;
int MaxEnd = beginPos;
int curMax = array[beginPos];
int curMaxAlignRight = array[beginPos];
int curMaxAlignRightBegin = beginPos;
dpArray[beginPos] = curMax;
for (int i = beginPos - 1; i >= endPos; i--) {
if (curMaxAlignRight > 0) {
if (array[i] + curMaxAlignRight > curMax) {
curMax = array[i] + curMaxAlignRight;
MaxBegin = curMaxAlignRightBegin;
MaxEnd = i;
} else {
}
curMaxAlignRight = curMaxAlignRight + array[i];
} else {
if (array[i] > curMax) {
curMax = array[i];
MaxBegin = i;
MaxEnd = i;
}
curMaxAlignRight = array[i];
curMaxAlignRightBegin = i;
}
dpArray[i] = curMax;
}
return curMax;
}
void getD(int * array, int length) {
int firstPostivePos = 0;
int lastPostivePos = length-1;
int initLeftMax = 0;//array[firstPostivePos];
int leftUnusedAcc = 0;
int rightMax = array[lastPostivePos];
int rightAcc = array[lastPostivePos];
int rightMaxLeftBound = lastPostivePos;
int MaxSum = -10001;
int * leftDPArray = (int *) malloc(length * sizeof(int));
int * rightDPArray = (int *) malloc(length * sizeof(int));
getMaxSum(array, firstPostivePos, lastPostivePos, leftDPArray);
// for (int i = 0; i < length; i++) {
// printf("%d ", leftDPArray[i]);
// }
// printf("n");
getMaxSumReverse(array, lastPostivePos, firstPostivePos, rightDPArray);
// for (int i = 0; i < length; i++) {
// printf("%d ", rightDPArray[i]);
// }
// printf("n");
for (int i = firstPostivePos; i <= lastPostivePos - 1; i++) {
int leftMaxSum = leftDPArray[i];
int rightMaxSum = rightDPArray[i+1];
if (leftMaxSum + rightMaxSum > MaxSum) {
MaxSum = leftMaxSum + rightMaxSum;
}
}
printf("%dn", MaxSum);
free(leftDPArray);
leftDPArray = NULL;
free(rightDPArray);
rightDPArray = NULL;
return;
}
int main() {
while(1) {
int num;
scanf("%d", &num);
if (num == 0) {
return 0;
}
int * array = (int *)malloc(num * sizeof(int));
int postiveNum = 0;
int maxValue = -10001;
for (int i = 0; i < num; i ++) {
char tmp;
scanf("%d%c", array + i, &tmp);
if (*(array + i) > 0) {
postiveNum++;
}
if (*(array + i) > maxValue) {
maxValue = *(array + i);
}
}
getD(array, num);
free(array);
array = NULL;
}
}
同2479, 买一送一.
一开始还想着整个用DP求出来,
结果最后一步却应该是枚举。
算法导论DP那一章举的矩阵乘法例子和这个有点像(那道题就是枚举了从i到j的所有可能结果, 然后求代价最小的), 但还是有显著不一样的
在那个例子中, 所有的问题都有同样的结构, 即都可进行分割, 然后求两个分割部(好可以分割)的最优解。
本题的特殊在于: 第一次分割以后, 子问题的结构就和父问题的结构不一样了(父问题是求两个连续区间的最大和,而子问题则变为了
求此区间的最大连续和)。
DP在本题的优势就在于,在分别从左到右 和 从右向左分别求出 a[1~ i] (i <= length -2) 和 a[j~length-1](j >=2) 区间内的最大连续和, 只需一次遍历,
在DP的步进式推倒中, 一个一个局部最优解被求了出来。
这也显出了DP的一个优势: 不会反复求解重叠子问题.
最后
以上就是生动嚓茶为你收集整理的poj-2593的全部内容,希望文章能够帮你解决poj-2593所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复