我是靠谱客的博主 鳗鱼冰淇淋,最近开发中收集的这篇文章主要介绍机器学习第四章决策树,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

 

决策树

3.1 决策树的构造

       使用决策树做预测需要以下过程:

3.1.1 信息增益

3.1.2 利用代码计算信息增益

3.2 决策树的生成和修剪

3.2.1 决策树的构建

3. 决策树的剪枝

3.1.2 决策树可视化

3.1.3 ID3、C4.5、CART的区别

3.4 使用决策树进行分类


决策树

决策树(decision tree):是一种基本的分类与回归方法,此处主要讨论分类的决策树。

在分类问题中,表示基于特征对实例进行分类的过程,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。

决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。

用决策树分类:从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点对应着该特征的一个取值,如此递归的对实例进行测试并分配,直到到达叶节点,最后将实例分到叶节点的类中。

下图为决策树示意图,圆点——内部节点,方框——叶节点

决策树学习的目标:根据给定的训练数据集构建一个决策树模型,使它能够对实例进行正确的分类。

决策树学习的本质:从训练集中归纳出一组分类规则,或者说是由训练数据集估计条件概率模型。

决策树学习的损失函数:正则化的极大似然函数

决策树学习的测试:最小化损失函数

决策树学习的目标:在损失函数的意义下,选择最优决策树的问题。

3.1 决策树的构造


决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建。

1) 开始:构建根节点,将所有训练数据都放在根节点,选择一个最优特征,按着这一特征将训练数据集分割成子集,使得各个子集有一个在当前条件下最好的分类。

2) 如果这些子集已经能够被基本正确分类,那么构建叶节点,并将这些子集分到所对应的叶节点去。

3)如果还有子集不能够被正确的分类,那么就对这些子集选择新的最优特征,继续对其进行分割,构建相应的节点,如果递归进行,直至所有训练数据子集被基本正确的分类,或者没有合适的特征为止。

4)每个子集都被分到叶节点上,即都有了明确的类,这样就生成了一颗决策树。

决策树的特点:

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配的问题
适用数据类型:数值型和标称型
首先:确定当前数据集上的决定性特征,为了得到该决定性特征,必须评估每个特征,完成测试之后,原始数据集就被划分为几个数据子集,这些数据子集会分布在第一个决策点的所有分支上,如果某个分支下的数据属于同一类型,则当前无序阅读的垃圾邮件已经正确的划分数据分类,无需进一步对数据集进行分割,如果不属于同一类,则要重复划分数据子集,直到所有相同类型的数据均在一个数据子集内。

检测数据集中每个子项是否属于同一类:

If so return 类标签:
Else
     寻找划分数据集的最好特征
     划分数据集
     创建分支节点
         for 每个划分的子集
             调用函数createBranch()并增加返回结果到分支节点中
         return 分支节点

使用决策树做预测需要以下过程:

收集数据:可以使用任何方法。(爬虫、公开数据集)
准备数据:收集完的数据,我们要进行整理,将这些所有收集的信息按照一定规则整理出来,并排版,方便我们进行后续处理。
分析数据:可以使用任何方法,决策树构造完成之后,我们可以检查决策树图形是否符合预期。
训练算法:这个过程也就是构造决策树,同样也可以说是决策树学习,就是构造一个决策树的数据结构。
测试算法:使用经验树计算错误率。当错误率达到了可接收范围,这个决策树就可以投放使用了。
使用算法:此步骤可以使用适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。
本节使用ID3算法来划分数据集,该算法处理如何划分数据集,何时停止划分数据集。

3.1.1 信息增益


划分数据集的大原则是:将无序数据变得更加有序,但是各种方法都有各自的优缺点,信息论是量化处理信息的分支科学,在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择,所以必须先学习如何计算信息增益,集合信息的度量方式称为香农熵,或者简称熵。

希望通过所给的训练数据学习一个贷款申请的决策树,用以对未来的贷款申请进行分类,即当新的客户提出贷款申请时,根据申请人的特征利用决策树决定是否批准贷款申请。

特征选择就是决定用哪个特征来划分特征空间。比如,我们通过上述数据表得到两个可能的决策树,分别由两个不同特征的根结点构成。

创建数据集,计算经验熵的代码

from math import log
"""
函数说明:创建测试数据集
Parameters:无
Returns:
dataSet:数据集
labels:分类属性
Modify:
2018-03-12
"""
def creatDataSet():
# 数据集
dataSet=[[0, 0, 0, 0, 'no'],
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
#分类属性
labels=['年龄','有工作','有自己的房子','信贷情况']
#返回数据集和分类属性
return dataSet,labels
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet:数据集
Returns:
shannonEnt:经验熵
Modify:
2018-03-12
"""
def calcShannonEnt(dataSet):
#返回数据集行数
numEntries=len(dataSet)
#保存每个标签(label)出现次数的字典
labelCounts={}
#对每组特征向量进行统计
for featVec in dataSet:
currentLabel=featVec[-1]
#提取标签信息
if currentLabel not in labelCounts.keys():
#如果标签没有放入统计次数的字典,添加进去
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
#label计数
shannonEnt=0.0
#经验熵
#计算经验熵
for key in labelCounts:
prob=float(labelCounts[key])/numEntries
#选择该标签的概率
shannonEnt-=prob*log(prob,2)
#利用公式计算
return shannonEnt
#返回经验熵
#main函数
if __name__=='__main__':
dataSet,features=creatDataSet()
print(dataSet)
print(calcShannonEnt(dataSet))
第0个特征的增益为0.083
第1个特征的增益为0.324
第2个特征的增益为0.420
第3个特征的增益为0.363
第0个特征的增益为0.252
第1个特征的增益为0.918
第2个特征的增益为0.474
{'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}

3.1.2 利用代码计算信息增益


from math import log
"""
函数说明:创建测试数据集
Parameters:无
Returns:
dataSet:数据集
labels:分类属性
Modify:
2018-03-12
"""
def creatDataSet():
# 数据集
dataSet=[[0, 0, 0, 0, 'no'],
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
#分类属性
labels=['年龄','有工作','有自己的房子','信贷情况']
#返回数据集和分类属性
return dataSet,labels
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet:数据集
Returns:
shannonEnt:经验熵
Modify:
2018-03-12
"""
def calcShannonEnt(dataSet):
#返回数据集行数
numEntries=len(dataSet)
#保存每个标签(label)出现次数的字典
labelCounts={}
#对每组特征向量进行统计
for featVec in dataSet:
currentLabel=featVec[-1]
#提取标签信息
if currentLabel not in labelCounts.keys():
#如果标签没有放入统计次数的字典,添加进去
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
#label计数
shannonEnt=0.0
#经验熵
#计算经验熵
for key in labelCounts:
prob=float(labelCounts[key])/numEntries
#选择该标签的概率
shannonEnt-=prob*log(prob,2)
#利用公式计算
return shannonEnt
#返回经验熵
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet:数据集
Returns:
shannonEnt:信息增益最大特征的索引值
Modify:
2018-03-12
"""
def chooseBestFeatureToSplit(dataSet):
#特征数量
numFeatures = len(dataSet[0]) - 1
#计数数据集的香农熵
baseEntropy = calcShannonEnt(dataSet)
#信息增益
bestInfoGain = 0.0
#最优特征的索引值
bestFeature = -1
#遍历所有特征
for i in range(numFeatures):
# 获取dataSet的第i个所有特征
featList = [example[i] for example in dataSet]
#创建set集合{},元素不可重复
uniqueVals = set(featList)
#经验条件熵
newEntropy = 0.0
#计算信息增益
for value in uniqueVals:
#subDataSet划分后的子集
subDataSet = splitDataSet(dataSet, i, value)
#计算子集的概率
prob = len(subDataSet) / float(len(dataSet))
#根据公式计算经验条件熵
newEntropy += prob * calcShannonEnt((subDataSet))
#信息增益
infoGain = baseEntropy - newEntropy
#打印每个特征的信息增益
print("第%d个特征的增益为%.3f" % (i, infoGain))
#计算信息增益
if (infoGain > bestInfoGain):
#更新信息增益,找到最大的信息增益
bestInfoGain = infoGain
#记录信息增益最大的特征的索引值
bestFeature = i
#返回信息增益最大特征的索引值
return bestFeature
"""
函数说明:按照给定特征划分数据集
Parameters:
dataSet:待划分的数据集
axis:划分数据集的特征
value:需要返回的特征的值
Returns:
shannonEnt:经验熵
Modify:
2018-03-12
"""
def splitDataSet(dataSet,axis,value):
retDataSet=[]
for featVec in dataSet:
if featVec[axis]==value:
reducedFeatVec=featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
#main函数
if __name__=='__main__':
dataSet,features=creatDataSet()
# print(dataSet)
# print(calcShannonEnt(dataSet))
print("最优索引值:"+str(chooseBestFeatureToSplit(dataSet)))
第0个特征的增益为0.083
第1个特征的增益为0.324
第2个特征的增益为0.420
第3个特征的增益为0.363
最优索引值:2

3.2 决策树的生成和修剪


   我们已经学习了从数据集构造决策树算法所需要的子功能模块,包括经验熵的计算和最优特征的选择,其工作原理如下:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分。第一次划分之后,数据集被向下传递到树的分支的下一个结点。在这个结点上,我们可以再次划分数据。因此我们可以采用递归的原则处理数据集。

   构建决策树的算法有很多,比如C4.5、ID3和CART,这些算法在运行时并不总是在每次划分数据分组时都会消耗特征。由于特征数目并不是每次划分数据分组时都减少,因此这些算法在实际使用时可能引起一定的问题。目前我们并不需要考虑这个问题,只需要在算法开始运行前计算列的数目,查看算法是否使用了所有属性即可。

决策树生成算法递归地产生决策树,直到不能继续下去未为止。这样产生的树往往对训练数据的分类很准确,但对未知的测试数据的分类却没有那么准确,即出现过拟合现象。过拟合的原因在于学习时过多地考虑如何提高对训练数据的正确分类,从而构建出过于复杂的决策树。解决这个问题的办法是考虑决策树的复杂度,对已生成的决策树进行简化。

3.2.1 决策树的构建


1. ID3算法
ID3算法的核心是在决策树各个结点上对应信息增益准则选择特征,递归地构建决策树。

具体方法是:

1)从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征。

2)由该特征的不同取值建立子节点,再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止;

3)最后得到一个决策树。

ID3相当于用极大似然法进行概率模型的选择

2. C4.5的生成算法

与ID3算法相似,但是做了改进,将信息增益比作为选择特征的标准。

递归构建决策树:

从数据集构造决策树算法所需的子功能模块工作原理如下:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分,第一次划分之后,数据将被向下传递到树分支的下一个节点,在此节点在此划分数据,因此可以使用递归的原则处理数据集。

递归结束的条件是:

程序完全遍历所有划分数据集的属性,或者每个分支下的所有实例都具有相同的分类,如果所有实例具有相同的分类,则得到一个叶子节点或者终止块,任何到达叶子节点的数据必然属于叶子节点的分类。
编写ID3算法代码

from math import log
import operator
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet:数据集
Returns:
shannonEnt:经验熵
Modify:
2018-03-12
"""
def calcShannonEnt(dataSet):
#返回数据集行数
numEntries=len(dataSet)
#保存每个标签(label)出现次数的字典
labelCounts={}
#对每组特征向量进行统计
for featVec in dataSet:
currentLabel=featVec[-1]
#提取标签信息
if currentLabel not in labelCounts.keys():
#如果标签没有放入统计次数的字典,添加进去
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
#label计数
shannonEnt=0.0
#经验熵
#计算经验熵
for key in labelCounts:
prob=float(labelCounts[key])/numEntries
#选择该标签的概率
shannonEnt-=prob*log(prob,2)
#利用公式计算
return shannonEnt
#返回经验熵
"""
函数说明:创建测试数据集
Parameters:无
Returns:
dataSet:数据集
labels:分类属性
Modify:
2018-03-13
"""
def createDataSet():
# 数据集
dataSet=[[0, 0, 0, 0, 'no'],
[0, 0, 0, 1, 'no'],
[0, 1, 0, 1, 'yes'],
[0, 1, 1, 0, 'yes'],
[0, 0, 0, 0, 'no'],
[1, 0, 0, 0, 'no'],
[1, 0, 0, 1, 'no'],
[1, 1, 1, 1, 'yes'],
[1, 0, 1, 2, 'yes'],
[1, 0, 1, 2, 'yes'],
[2, 0, 1, 2, 'yes'],
[2, 0, 1, 1, 'yes'],
[2, 1, 0, 1, 'yes'],
[2, 1, 0, 2, 'yes'],
[2, 0, 0, 0, 'no']]
#分类属性
labels=['年龄','有工作','有自己的房子','信贷情况']
#返回数据集和分类属性
return dataSet,labels
"""
函数说明:按照给定特征划分数据集
Parameters:
dataSet:待划分的数据集
axis:划分数据集的特征
value:需要返回的特征值
Returns:
无
Modify:
2018-03-13
"""
def splitDataSet(dataSet,axis,value):
#创建返回的数据集列表
retDataSet=[]
#遍历数据集
for featVec in dataSet:
if featVec[axis]==value:
#去掉axis特征
reduceFeatVec=featVec[:axis]
#将符合条件的添加到返回的数据集
reduceFeatVec.extend(featVec[axis+1:])
retDataSet.append(reduceFeatVec)
#返回划分后的数据集
return retDataSet
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet:数据集
Returns:
shannonEnt:信息增益最大特征的索引值
Modify:
2018-03-13
"""
def chooseBestFeatureToSplit(dataSet):
#特征数量
numFeatures = len(dataSet[0]) - 1
#计数数据集的香农熵
baseEntropy = calcShannonEnt(dataSet)
#信息增益
bestInfoGain = 0.0
#最优特征的索引值
bestFeature = -1
#遍历所有特征
for i in range(numFeatures):
# 获取dataSet的第i个所有特征
featList = [example[i] for example in dataSet]
#创建set集合{},元素不可重复
uniqueVals = set(featList)
#经验条件熵
newEntropy = 0.0
#计算信息增益
for value in uniqueVals:
#subDataSet划分后的子集
subDataSet = splitDataSet(dataSet, i, value)
#计算子集的概率
prob = len(subDataSet) / float(len(dataSet))
#根据公式计算经验条件熵
newEntropy += prob * calcShannonEnt((subDataSet))
#信息增益
infoGain = baseEntropy - newEntropy
#打印每个特征的信息增益
print("第%d个特征的增益为%.3f" % (i, infoGain))
#计算信息增益
if (infoGain > bestInfoGain):
#更新信息增益,找到最大的信息增益
bestInfoGain = infoGain
#记录信息增益最大的特征的索引值
bestFeature = i
#返回信息增益最大特征的索引值
return bestFeature
"""
函数说明:统计classList中出现次数最多的元素(类标签)
Parameters:
classList:类标签列表
Returns:
sortedClassCount[0][0]:出现次数最多的元素(类标签)
Modify:
2018-03-13
"""
def majorityCnt(classList):
classCount={}
#统计classList中每个元素出现的次数
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]+=1
#根据字典的值降序排列
sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
"""
函数说明:创建决策树
Parameters:
dataSet:训练数据集
labels:分类属性标签
featLabels:存储选择的最优特征标签
Returns:
myTree:决策树
Modify:
2018-03-13
"""
def createTree(dataSet,labels,featLabels):
#取分类标签(是否放贷:yes or no)
classList=[example[-1] for example in dataSet]
#如果类别完全相同,则停止继续划分
if classList.count(classList[0])==len(classList):
return classList[0]
#遍历完所有特征时返回出现次数最多的类标签
if len(dataSet[0])==1:
return majorityCnt(classList)
#选择最优特征
bestFeat=chooseBestFeatureToSplit(dataSet)
#最优特征的标签
bestFeatLabel=labels[bestFeat]
featLabels.append(bestFeatLabel)
#根据最优特征的标签生成树
myTree={bestFeatLabel:{}}
#删除已经使用的特征标签
del(labels[bestFeat])
#得到训练集中所有最优特征的属性值
featValues=[example[bestFeat] for example in dataSet]
#去掉重复的属性值
uniqueVls=set(featValues)
#遍历特征,创建决策树
for value in uniqueVls:
myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),
labels,featLabels)
return myTree
if __name__=='__main__':
dataSet,labels=createDataSet()
featLabels=[]
myTree=createTree(dataSet,labels,featLabels)
print(myTree)
第0个特征的增益为0.083
第1个特征的增益为0.324
第2个特征的增益为0.420
第3个特征的增益为0.363
第0个特征的增益为0.252
第1个特征的增益为0.918
第2个特征的增益为0.474
{'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}

3. 决策树的剪枝


决策树生成算法递归的产生决策树,直到不能继续下去为止,这样产生的树往往对训练数据的分类很准确,但对未知测试数据的分类缺没有那么精确,即会出现过拟合现象。过拟合产生的原因在于在学习时过多的考虑如何提高对训练数据的正确分类,从而构建出过于复杂的决策树,解决方法是考虑决策树的复杂度,对已经生成的树进行简化。

剪枝(pruning):从已经生成的树上裁掉一些子树或叶节点,并将其根节点或父节点作为新的叶子节点,从而简化分类树模型。

实现方式:极小化决策树整体的损失函数或代价函数来实现

决策树算法很容易过拟合(overfitting),剪枝算法就是用来防止决策树过拟合,提高泛华性能的方法。

剪枝分为预剪枝与后剪枝。

预剪枝是指在决策树的生成过程中,对每个节点在划分前先进行评估,若当前的划分不能带来泛化性能的提升,则停止划分,并将当前节点标记为叶节点。

后剪枝是指先从训练集生成一颗完整的决策树,然后自底向上对非叶节点进行考察,若将该节点对应的子树替换为叶节点,能带来泛化性能的提升,则将该子树替换为叶节点。

那么怎么来判断是否带来泛化性能的提升那?最简单的就是留出法,即预留一部分数据作为验证集来进行性能评估。

3.2.2 决策树可视化


这里代码都是关于Matplotlib的,如果对于Matplotlib不了解的,可以先学习下,Matplotlib的内容这里就不再累述。可视化需要用到的函数:

getNumLeafs:获取决策树叶子结点的数目

getTreeDepth:获取决策树的层数

plotNode:绘制结点

plotMidText:标注有向边属性值

plotTree:绘制决策树

createPlot:创建绘制面板

3.2.3 ID3、C4.5、CART的区别


这三个是非常著名的决策树算法。简单粗暴来说,ID3 使用信息增益作为选择特征的准则;C4.5 使用信息增益比作为选择特征的准则;CART 使用 Gini 指数作为选择特征的准则。

一、ID3
熵表示的是数据中包含的信息量大小。熵越小,数据的纯度越高,也就是说数据越趋于一致,这是我们希望的划分之后每个子节点的样子。

信息增益 = 划分前熵 - 划分后熵。信息增益越大,则意味着使用属性 a 来进行划分所获得的 “纯度提升” 越大 **。也就是说,用属性 a 来划分训练集,得到的结果中纯度比较高。

ID3 仅仅适用于二分类问题。ID3 仅仅能够处理离散属性。

二、C4.5

C4.5 克服了 ID3 仅仅能够处理离散属性的问题,以及信息增益偏向选择取值较多特征的问题,使用信息增益比来选择特征。信息增益比 = 信息增益 / 划分前熵 选择信息增益比最大的作为最优特征。

C4.5 处理连续特征是先将特征取值排序,以连续两个值中间值作为划分标准。尝试每一种划分,并计算修正后的信息增益,选择信息增益最大的分裂点作为该属性的分裂点。

三、CART

CART 与 ID3,C4.5 不同之处在于 CART 生成的树必须是二叉树。也就是说,无论是回归还是分类问题,无论特征是离散的还是连续的,无论属性取值有多个还是两个,内部节点只能根据属性值进行二分。

CART 的全称是分类与回归树。从这个名字中就应该知道,CART 既可以用于分类问题,也可以用于回归问题。

回归树中,使用平方误差最小化准则来选择特征并进行划分。每一个叶子节点给出的预测值,是划分到该叶子节点的所有样本目标值的均值,这样只是在给定划分的情况下最小化了平方误差。

要确定最优化分,还需要遍历所有属性,以及其所有的取值来分别尝试划分并计算在此种划分情况下的最小平方误差,选取最小的作为此次划分的依据。由于回归树生成使用平方误差最小化准则,所以又叫做最小二乘回归树。

分类树种,使用 Gini 指数最小化准则来选择特征并进行划分;

Gini 指数表示集合的不确定性,或者是不纯度。基尼指数越大,集合不确定性越高,不纯度也越大。这一点和熵类似。另一种理解基尼指数的思路是,基尼指数是为了最小化误分类的概率。

信息增益 vs 信息增益比

之所以引入了信息增益比,是由于信息增益的一个缺点。那就是:信息增益总是偏向于选择取值较多的属性。信息增益比在此基础上增加了一个罚项,解决了这个问题。

Gini 指数 vs 熵

既然这两个都可以表示数据的不确定性,不纯度。那么这两个有什么区别那?

Gini 指数的计算不需要对数运算,更加高效;
Gini 指数更偏向于连续属性,熵更偏向于离散属性。


3.3 使用决策树进行分类


依靠训练数据构造了决策树之后,我们可以将它用于实际数据的分类。在执行数据分类时,需要决策树以及用于构造树的标签向量。然后,程序比较测试数据与决策树上的数值,递归执行该过程直到进入叶子结点;最后将测试数据定义为叶子结点所属的类型。在构建决策树的代码,可以看到,有个featLabels参数。它是用来干什么的?它就是用来记录各个分类结点的,在用决策树做预测的时候,我们按顺序输入需要的分类结点的属性值即可。举个例子,比如我用上述已经训练好的决策树做分类,那么我只需要提供这个人是否有房子,是否有工作这两个信息即可,无需提供冗余的信息。
3.4 决策树的存储
构造决策树是很耗时的任务,即使处理很小的数据集,如前面的样本数据,也要花费几秒的时间,如果数据集很大,将会耗费很多计算时间。然而用创建好的决策树解决分类问题,则可以很快完成。因此,为了节省计算时间,最好能够在每次执行分类时调用已经构造好的决策树。为了解决这个问题,需要使用Python模块pickle序列化对象。序列化对象可以在磁盘上保存对象,并在需要的时候读取出来。
 

最后

以上就是鳗鱼冰淇淋为你收集整理的机器学习第四章决策树的全部内容,希望文章能够帮你解决机器学习第四章决策树所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(66)

评论列表共有 0 条评论

立即
投稿
返回
顶部