概述
一、背景
阿里技术的公众发了一篇文章《谁是代码界3%的王者?》,
提到“在Java代码界,有些陷阱外表看起来是个青铜实际上是王者,据说97%工程师会被“秒杀””
给出了五道题,非常考验基础。
本文简单解读第4题,并分享通用的学习和研究方法。
二、题目
题目配套代码
public class BigDecimalTest {
public static void main(String[] args) {
BigDecimal a = new BigDecimal(0.1);
System.out.println(a);
BigDecimal b = new BigDecimal("0.1");
System.out.println(b);
}
}
题目内容
下列哪种说法是正确的:
A: 两种赋值的方式是一样的
B: 推荐a的赋值方式
C: 推荐b的赋值方式
先公布答案:C
三、分析
3.1 直接运行看效果
上面源代码输出的效果如下
0.1000000000000000055511151231257827021181583404541015625
0.1
显然b是我们想要的效果
3.2 源代码大法
java.math.BigDecimal#BigDecimal(java.lang.String)
/**
* Translates the string representation of a {@code BigDecimal}
* into a {@code BigDecimal}. The string representation consists
* of an optional sign, {@code '+'} (<tt> '\u002B'</tt>) or
* {@code '-'} (<tt>'\u002D'</tt>), followed by a sequence of
* zero or more decimal digits ("the integer"), optionally
* followed by a fraction, optionally followed by an exponent.
*
* <p>The fraction consists of a decimal point followed by zero
* or more decimal digits. The string must contain at least one
* digit in either the integer or the fraction. The number formed
* by the sign, the integer and the fraction is referred to as the
* <i>significand</i>.
*
* <p>The exponent consists of the character {@code 'e'}
* (<tt>'\u0065'</tt>) or {@code 'E'} (<tt>'\u0045'</tt>)
* followed by one or more decimal digits. The value of the
* exponent must lie between -{@link Integer#MAX_VALUE} ({@link
* Integer#MIN_VALUE}+1) and {@link Integer#MAX_VALUE}, inclusive.
*
* <p>More formally, the strings this constructor accepts are
* described by the following grammar:
* <blockquote>
* <dl>
* <dt><i>BigDecimalString:</i>
* <dd><i>Sign<sub>opt</sub> Significand Exponent<sub>opt</sub></i>
* <dt><i>Sign:</i>
* <dd>{@code +}
* <dd>{@code -}
* <dt><i>Significand:</i>
* <dd><i>IntegerPart</i> {@code .} <i>FractionPart<sub>opt</sub></i>
* <dd>{@code .} <i>FractionPart</i>
* <dd><i>IntegerPart</i>
* <dt><i>IntegerPart:</i>
* <dd><i>Digits</i>
* <dt><i>FractionPart:</i>
* <dd><i>Digits</i>
* <dt><i>Exponent:</i>
* <dd><i>ExponentIndicator SignedInteger</i>
* <dt><i>ExponentIndicator:</i>
* <dd>{@code e}
* <dd>{@code E}
* <dt><i>SignedInteger:</i>
* <dd><i>Sign<sub>opt</sub> Digits</i>
* <dt><i>Digits:</i>
* <dd><i>Digit</i>
* <dd><i>Digits Digit</i>
* <dt><i>Digit:</i>
* <dd>any character for which {@link Character#isDigit}
* returns {@code true}, including 0, 1, 2 ...
* </dl>
* </blockquote>
*
* <p>The scale of the returned {@code BigDecimal} will be the
* number of digits in the fraction, or zero if the string
* contains no decimal point, subject to adjustment for any
* exponent; if the string contains an exponent, the exponent is
* subtracted from the scale. The value of the resulting scale
* must lie between {@code Integer.MIN_VALUE} and
* {@code Integer.MAX_VALUE}, inclusive.
*
* <p>The character-to-digit mapping is provided by {@link
* java.lang.Character#digit} set to convert to radix 10. The
* String may not contain any extraneous characters (whitespace,
* for example).
*
* <p><b>Examples:</b><br>
* The value of the returned {@code BigDecimal} is equal to
* <i>significand</i> × 10<sup> <i>exponent</i></sup>.
* For each string on the left, the resulting representation
* [{@code BigInteger}, {@code scale}] is shown on the right.
* <pre>
* "0" [0,0]
* "0.00" [0,2]
* "123" [123,0]
* "-123" [-123,0]
* "1.23E3" [123,-1]
* "1.23E+3" [123,-1]
* "12.3E+7" [123,-6]
* "12.0" [120,1]
* "12.3" [123,1]
* "0.00123" [123,5]
* "-1.23E-12" [-123,14]
* "1234.5E-4" [12345,5]
* "0E+7" [0,-7]
* "-0" [0,0]
* </pre>
*
* <p>Note: For values other than {@code float} and
* {@code double} NaN and ±Infinity, this constructor is
* compatible with the values returned by {@link Float#toString}
* and {@link Double#toString}. This is generally the preferred
* way to convert a {@code float} or {@code double} into a
* BigDecimal, as it doesn't suffer from the unpredictability of
* the {@link #BigDecimal(double)} constructor.
*
* @param val String representation of {@code BigDecimal}.
*
* @throws NumberFormatException if {@code val} is not a valid
* representation of a {@code BigDecimal}.
*/
public BigDecimal(String val) {
this(val.toCharArray(), 0, val.length());
}
人家都怕你不仔细看给了你那么多示例,还专门给了一个note
This is generally the preferred way to convert a {@code float} or {@code double} into a BigDecimal, as it doesn't suffer from the unpredictability of the {@link #BigDecimal(double)} constructor.
此构造函数是float或double转到BigDecimal的推荐方式,因为该构造方法不会像BigDecimal(double)一样会有一些不可预测的情况。
它最终调用了java.math.BigDecimal#BigDecimal(char[], int, int) 感兴趣大家可以自己去看。
我们再看另外一个构造函数
java.math.BigDecimal#BigDecimal(double)
/**
* Translates a {@code double} into a {@code BigDecimal} which
* is the exact decimal representation of the {@code double}'s
* binary floating-point value. The scale of the returned
* {@code BigDecimal} is the smallest value such that
* <tt>(10<sup>scale</sup> × val)</tt> is an integer.
* <p>
* <b>Notes:</b>
* <ol>
* <li>
* The results of this constructor can be somewhat unpredictable.
* One might assume that writing {@code new BigDecimal(0.1)} in
* Java creates a {@code BigDecimal} which is exactly equal to
* 0.1 (an unscaled value of 1, with a scale of 1), but it is
* actually equal to
* 0.1000000000000000055511151231257827021181583404541015625.
* This is because 0.1 cannot be represented exactly as a
* {@code double} (or, for that matter, as a binary fraction of
* any finite length). Thus, the value that is being passed
* <i>in</i> to the constructor is not exactly equal to 0.1,
* appearances notwithstanding.
*
* <li>
* The {@code String} constructor, on the other hand, is
* perfectly predictable: writing {@code new BigDecimal("0.1")}
* creates a {@code BigDecimal} which is <i>exactly</i> equal to
* 0.1, as one would expect. Therefore, it is generally
* recommended that the {@linkplain #BigDecimal(String)
* <tt>String</tt> constructor} be used in preference to this one.
*
* <li>
* When a {@code double} must be used as a source for a
* {@code BigDecimal}, note that this constructor provides an
* exact conversion; it does not give the same result as
* converting the {@code double} to a {@code String} using the
* {@link Double#toString(double)} method and then using the
* {@link #BigDecimal(String)} constructor. To get that result,
* use the {@code static} {@link #valueOf(double)} method.
* </ol>
*
* @param val {@code double} value to be converted to
* {@code BigDecimal}.
* @throws NumberFormatException if {@code val} is infinite or NaN.
*/
public BigDecimal(double val) {
this(val,MathContext.UNLIMITED);
}
专门提到
new BigDecimal(0.1)的结果是0.1000000000000000055511151231257827021181583404541015625.
This is because 0.1 cannot be represented exactly as a {@code double} (or, for that matter, as a binary fraction of any finite length).
Thus, the value that is being passed <i>in</i> to the constructor is not exactly equal to 0.1, appearances notwithstanding.
这是因为double类型无法精确表示0.1。因此传入0.1参数到该构造方法其实并不精确等于0.1。
The {@code String} constructor, on the other hand, is perfectly predictable: writing {@code new BigDecimal("0.1")} creates a {@code BigDecimal} which is <i>exactly</i> equal to 0.1, as one would expect. Therefore, it is generally recommended that the {@linkplain #BigDecimal(String <tt>String</tt> constructor} be used in preference to this one.
更推荐使用参数为String的构造方法,换句话说用BigDecimal("0.1")来构造完全等于0.1的BigDecimal。
因此,推荐带String参数的构造方法。
When a {@code double} must be used as a source for a {@code BigDecimal}, note that this constructor provides an exact conversion; it does not give the same result asconverting the {@code double} to a {@code String} using the {@link Double#toString(double)} method and then using the {@link #BigDecimal(String)} constructor.
如果必须把double作为构造方法的参数时,注意和new BigDecimal(Double.toString(0.1d))的结果是完全不同的。
因此答案就不言而喻了。
四、其他
4.1 双精度问题
计算机通过二进制来存储数据,双精度8字节(64位)的表示
其中第63索引位,共1位,表示符号位(sign bit),用s表示;0表示正数,1表示负数
第52到62索引位,共11位,表示指数(signed exponent),用e表示;2的多少次方
第51到0索引位(significant/mantissa value),共52位,表示小数部分,用m表示;有效位
浮点型:https://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html
十进制无法表示三分之一,二进制无法表示十分之一。
像三分之一一样,三分之一无法用有限个十进制数表示。10的-1次幂(0.1)不是有限个2的幂的和,所以不能用有限个2进制位表示,而double是8字节的,只有64位,是有限个二进制数,因此无法精确表示0.1。
五、启发
正如前面的几个问题解答中我提到的几个常见方法一样,这类问题我们最好的办法是看源码!看源码的注释!!
看官方文档!!看权威规范!!(如本文提到的《IEEE Arithmetic》的网页)。
另外一个启发是计算机专业基础要扎实!!!二进制要理解的透彻一些。
开发的时候尽量多去源码里看注释!!!
附录
《谁是代码界3%的王者?- 第三题switch问题简单解读》
《谁是代码界3%的王者?- 第五题Lock的简单解读》
最后
以上就是阔达胡萝卜为你收集整理的谁是代码界3%的王者?- 第四题BigDecimal问题简单解读的全部内容,希望文章能够帮你解决谁是代码界3%的王者?- 第四题BigDecimal问题简单解读所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复