概述
欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
图像分类是计算机视觉中最基础的技术,细粒度分类是图像分类任务中比较复杂的问题,是解决现实生活中很多图像分类任务必须掌握的方法,本次我们来简单给大家推荐一些工作。
作者&编辑 | 言有三
1 基于定位的模型
最早期的细粒度分类方法是以Part-based R-CNN为代表的强监督模型,它们的核心思想就是基于细粒度分类需要对局部的细节进行识别,因为先对这些语义区域进行定位,然后将提取的特征进行融合。
文章引用量:1000+
推荐指数:✦✦✦✦✧
[1] Zhang N, Donahue J, Girshick R, et al. Part-based R-CNNs for fine-grained category detection[C]//European conference on computer vision. Springer, Cham, 2014: 834-849.
[2] Branson S, Van Horn G, Belongie S, et al. Bird species categorization using pose normalized deep convolutional nets[J]. arXiv preprint arXiv:1406.2952, 2014.
2 高阶特征模型
对于细粒度分类任务来说,需要提取比粗粒度分类更加具有代表性的特征才能获得更好的性能,其中以双线性模型(Bilinear CNN)为代表的高阶特征模型就取得了非常好的精度。
文章引用量:3000+
推荐指数:✦✦✦✦✦
[3] Lin T Y, RoyChowdhury A, Maji S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1449-1457.
[4] Gao Y, Beijbom O, Zhang N, et al. Compact bilinear pooling[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 317-326.
3 注意力模型
很显然,注意力机制是细粒度分类任务的关键,基于目标检测的模型是通过检测实现了显式的注意力,前述的双线性模型则是一种自注意力机制,而通用的注意力机制模型众多,在细粒度分类任务中应用广泛,比较典型的是MA-CNN模型,它是基于聚类的注意力模型。
文章引用量:2000+
推荐指数:✦✦✦✦✦
[5] Zheng H, Fu J, Mei T, et al. Learning multi-attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the IEEE international conference on computer vision. 2017: 5209-5217.
[6] Fu J, Zheng H, Mei T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4438-4446.
4 优化目标设计
细粒度分类任务与人脸识别算法都属于非常精细的分类任务,在人脸识别领域,针对softmax等优化目标的改进是一个非常重要的研究方向,可以提升模型的精度和泛化能力,这在细粒度分类领域也有相关研究。
文章引用量:100+
推荐指数:✦✦✦✦✧
[7] Dubey A, Gupta O, Raskar R, et al. Maximum-entropy fine grained classification[J]. Advances in neural information processing systems, 2018, 31.
5 如何实战
为了帮助大家掌握图像分类的相关知识!我们推出了相关的专栏课程《深度学习之图像分类:理论与实践》,感兴趣可以进一步阅读:
【视频课】CV必学,超10小时,3大模块,5大案例,循序渐进地搞懂图像分类理论与实践!
总结
本次我们介绍了细粒度图像分类的一些典型研究,从事相关方向的朋友可以通过阅读这些文章进行初步了解,细粒度图像分类是掌握图像分类任务的必经之路。
有三AI- CV夏季划
如何系统性地从零进阶计算机视觉,永久系统性地跟随我们社区学习CV的相关内容,请关注有三AI-CV夏季划组,阅读了解下文:
【CV夏季划】2022年正式入夏,从理论到实践,如何系统性进阶CV?(产学研一体的超硬核培养方式)
转载文章请后台联系
侵权必究
往期相关精选
【每周CV论文推荐】 掌握残差网络必读的10多篇文章
【每周CV论文推荐】 初学者必须精读的5篇深度学习优化相关文章
【每周CV论文推荐】 CV领域中数据增强相关的论文推荐
【每周CV论文推荐】 初学高效率CNN模型设计应该读的文章
【每周CV论文推荐】 初学目标检测必须要读的文章
【每周CV论文推荐】 初学深度学习图像分割必须要读的文章
【每周CV论文】初学实例分割需要读哪些文章?
【每周CV论文推荐】 初学GAN必须要读的文章
【每周CV论文推荐】 深度学习人脸检测入门必读文章
【每周CV论文推荐】 初学深度学习人脸关键点检测必读文章
【每周CV论文推荐】 初学深度学习人脸识别和验证必读文章
【每周CV论文推荐】 初学深度学习人脸属性分析必读的文章
【每周CV论文推荐】 初学活体检测与伪造人脸检测必读的文章
【每周CV论文推荐】 初学深度学习单张图像三维人脸重建需要读的文章
【每周CV论文推荐】 人脸识别剩下的难题:从遮挡,年龄,姿态,妆造到亲属关系,人脸攻击
【每周CV论文推荐】换脸算法都有哪些经典的思路?
【每周CV论文推荐】初学人脸属性编辑都有哪些值得阅读的论文?
【每周CV论文】深度学习文本检测与识别入门必读文章
【每周CV论文】深度学习图像降噪应该从阅读哪些文章开始
【每周CV论文】初学GAN图像风格化必须要读的文章
【每周CV论文】初学深度学习图像超分辨应该要读的文章
【每周CV论文】初学深度学习图像对比度增强应该要读的文章
【每周CV论文】初学深度学习图像修复应该要读的文章
【每周CV论文】初学深度学习图像风格化要读的文章
【每周CV论文推荐】初学模型可视化分析有哪些值得阅读的论文?
【每周CV论文推荐】GAN与VAE的结合,有哪些必读的论文?
【每周CV论文推荐】初学视频分类与行为识别有哪些值得阅读的论文?
【每周CV论文推荐】初学视觉注意力机制有哪些值得阅读的论文?
【每周CV论文推荐】StyleGAN人脸属性编辑有哪些经典论文需要阅读
【每周CV论文推荐】初学基于GAN的视频生成有哪些经典论文需要阅读
【每周CV论文推荐】初学基于GAN的三维图像生成有哪些经典论文需要阅读
【每周CV论文推荐】基于GAN的图像数据增强有哪些经典论文值得阅读
【每周CV论文推荐】GAN如何用于目标检测模型提升性能?
【每周CV论文推荐】GAN如何用于图像分割模型提升性能?
【每周CV论文推荐】初学基于GAN的图像语义编辑,需要阅读哪些论文?
【每周GAN论文推荐】最经典与常见的GAN目标函数设计汇总
【每周CV论文推荐】GAN在医学图像生成与增强中的典型应用
【每周CV论文推荐】基于GAN的对抗攻击,适合阅读那些文章入门?
【每周CV论文推荐】GAN在医学图像分割中的典型应用
【每周CV论文推荐】GAN在自动驾驶视觉任务中的典型应用
最后
以上就是魔幻老师为你收集整理的【每周CV论文推荐】初学细粒度分类值得阅读的文章的全部内容,希望文章能够帮你解决【每周CV论文推荐】初学细粒度分类值得阅读的文章所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复