概述
前言:
在目标检测的过程中,RPN生成的所有锚点(anchor)需要找到与之对应的在原图上标明的基准边框(gt)。在maskrcnn_benchmark中,这一匹配的过程由matcher.py来完成。该类定义了锚点与基准边框匹配的规则,将锚点与基准边框的IoU小于某个阈值的锚点设置为背景,大于另一个阈值的锚点设置为含目标的锚点,介于两个阈值之间的标记为第三种锚点。这种分类有助于RPN的后续操作,其代码与详细注释为:
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
class Matcher(object):
"""
这个类主要实现将RPN提取出来的所有锚点(anchor)与标注的基准边框(ground truth box)进行匹配
每一个锚点都会匹配一个与之对应的基准边框,当锚点与基准边框的Iou小于一定值时,认定其找不到对应
的边框,认定其为背景。每一个基准边框对应0个或者多个锚点
这个匹配操作是基于计算过的各个锚点与基准边框之间的IoU的MxN矩阵(match_quality_matrix)来
进行的。其中M为基准边框的个数,N为锚点的个数。IoU矩阵的每一列表示某个锚点与所有各个基准框之间
的IoU,每一行表示每个基准边框与所有各个锚点之间的IoU
本Matcher类返回一个长度为N的向量,其表示每一个锚点的类型:背景-1,介于背景和目标之间-2以及
目标边框(各自对应的基准边框的索引)
This class assigns to each predicted "element" (e.g., a box) a ground-truth
element. Each predicted element will have exactly zero or one matches; each
ground-truth element may be assigned to zero or more predicted elements.
Matching is based on the MxN match_quality_matrix, that characterizes how well
each (ground-truth, predicted)-pair match. For example, if the elements are
boxes, the matrix may contain box IoU overlap values.
The matcher returns a tensor of size N containing the index of the ground-truth
element m that matches to prediction n. If there is no match, a negative value
is returned.
"""
# 如果锚点与基准边框的IoU小于某个阈值则让他对应的基准边框索引为-1
BELOW_LOW_THRESHOLD = -1
# 如果锚点与基准边框的IoU介于两个阈值则让他对应的基准边框索引为 - 2
BETWEEN_THRESHOLDS = -2
def __init__(self, high_threshold, low_threshold, allow_low_quality_matches=False):
"""
参数:
high_threshold (float): quality values greater than or equal to
this value are candidate matches.IoU阈值参数,锚点与基准边框(gt)的
IoU大于该值时,才能认定锚点内有目标
low_threshold (float): a lower quality threshold used to stratify
matches into three levels:
1) matches >= high_threshold
2) BETWEEN_THRESHOLDS matches in [low_threshold, high_threshold)
3) BELOW_LOW_THRESHOLD matches in [0, low_threshold)
IoU阈值参数,锚点与基准边框(gt)的IoU小于该值时,才能认定锚点为背景
这两个阈值吧所有的锚点分为3类
1》大于等于high_threshold:目标--设置对应的基准边框编号为真实的基准框索引
2》小于low_threshold:背景--设置对应的基准边框编号为BELOW_LOW_THRESHOLD
3》介于二者之间--设置对应的基准边框编号为BETWEEN_THRESHOLDS
allow_low_quality_matches (bool): if True, produce additional matches
for predictions that have only low-quality match candidates. See
set_low_quality_matches_ for more details.
如果值为真,则本匹配类将允许锚点匹配上比较小IoU的那个基准边框,因为有很多情况下
生成的锚点并不能更好的逼近基准边框,所以IoU并不是很大,当在一个基准边框的锚点中,
IoU最大的那个锚点的IoU可能小于low_threshold,按照常理,他应该被识别为背景,但是
当allow_low_quality_matches为True时允许小于low_threshold的锚点与相应的基准
边框相对应
"""
# 如果较小的阈值不是小于较大的阈值,则报错
assert low_threshold <= high_threshold
# 将参数保存为类内属性
self.high_threshold = high_threshold
self.low_threshold = low_threshold
self.allow_low_quality_matches = allow_low_quality_matches
def __call__(self, match_quality_matrix):
"""
参数:
match_quality_matrix (Tensor[float]): an MxN tensor, containing the
pairwise quality between M ground-truth elements and N predicted elements.
计算过的各个锚点与基准边框之间的IoU的MxN矩阵(match_quality_matrix)来
进行的。其中M为基准边框的个数,N为锚点的个数。IoU矩阵的每一列表示某个锚点与所有各个基准框之间
的IoU,每一行表示每个基准边框与所有各个锚点之间的IoU
Returns:
matches (Tensor[int64]): an N tensor where N[i] is a matched gt in
[0, M - 1] or a negative value indicating that prediction i could not
be matched.
长度为N的向量,N[i]表示每一个锚点对应的基准边框:背景-1,介于背景和目标之间-2以及
目标边框(各自对应的基准边框的索引)
"""
# 如果保存IoU的张量长度为0,则有错误。判断各种存在错误的情况
if match_quality_matrix.numel() == 0:
# empty targets or proposals not supported during training
if match_quality_matrix.shape[0] == 0:
raise ValueError(
"No ground-truth boxes available for one of the images "
"during training")
else:
raise ValueError(
"No proposal boxes available for one of the images "
"during training")
# match_quality_matrix is M (gt) x N (predicted)
# 从每一列中找到最大的IoU,即找到与锚点IoU最大的基准边框。得到Iou的值以及基准边框的索引
matched_vals, matches = match_quality_matrix.max(dim=0)
# 如果允许不再最大IoU的情况下匹配
if self.allow_low_quality_matches:
all_matches = matches.clone()
# 分别得到不同种类的锚点的索引
# 得到背景锚点的索引
below_low_threshold = matched_vals < self.low_threshold
# 得到介于背景和目标之间的锚点的索引
between_thresholds = (matched_vals >= self.low_threshold) & (
matched_vals < self.high_threshold
)
# 将背景锚点对应的基准边框索引设置为BELOW_LOW_THRESHOLD -1
matches[below_low_threshold] = Matcher.BELOW_LOW_THRESHOLD
# 将介于背景和目标之间的锚点对应的基准边框索引设置为BETWEEN_THRESHOLDS -2
matches[between_thresholds] = Matcher.BETWEEN_THRESHOLDS
# 如果允许较小IoU的情况下匹配,则允许保留各个基准边框的所有锚点中IoU最大的那个锚点与其基准边框对应,尽管该IoU可能很小
if self.allow_low_quality_matches:
self.set_low_quality_matches_(matches, all_matches, match_quality_matrix)
# 返回锚点与基准边框对应的索引向量
return matches
def set_low_quality_matches_(self, matches, all_matches, match_quality_matrix):
"""
Produce additional matches for predictions that have only low-quality matches.
Specifically, for each ground-truth find the set of predictions that have
maximum overlap with it (including ties); for each prediction in that set, if
it is unmatched, then match it to the ground-truth with which it has the highest
quality value.
允许锚点匹配上比较小IoU的那个基准边框,因为有很多情况下
生成的锚点并不能更好的逼近基准边框,所以IoU并不是很大,当在一个基准边框的锚点中,
IoU最大的那个锚点的IoU可能小于low_threshold,按照常理,他应该被识别为背景,但是
当allow_low_quality_matches为True时允许小于low_threshold的锚点与相应的基准
边框相对应
"""
# 对于每一个基准框找到与之对应的最大IoU
highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
# Find highest quality match available, even if it is low, including ties
# 对于每一个基准框找到与之对应的IoU最大的锚点索引
gt_pred_pairs_of_highest_quality = torch.nonzero(
match_quality_matrix == highest_quality_foreach_gt[:, None]
)
# Example gt_pred_pairs_of_highest_quality:
# tensor([[ 0, 39796],
# [ 1, 32055],
# [ 1, 32070],
# [ 2, 39190],
# [ 2, 40255],
# [ 3, 40390],
# [ 3, 41455],
# [ 4, 45470],
# [ 5, 45325],
# [ 5, 46390]])
# Each row is a (gt index, prediction index)
# Note how gt items 1, 2, 3, and 5 each have two ties
# 对于每一个基准框找到与之对应的IoU最大的锚点索引
pred_inds_to_update = gt_pred_pairs_of_highest_quality[:, 1]
# 将刚刚找出的锚点对应的基准边框恢复,因为当IoU很小时其对应的基准边框索引可能被修正为-1或者-2
matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
最后
以上就是幽默百合为你收集整理的maskrcnn_benchmark 代码详解之 matcher.py的全部内容,希望文章能够帮你解决maskrcnn_benchmark 代码详解之 matcher.py所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复