我是靠谱客的博主 慈祥烧鹅,最近开发中收集的这篇文章主要介绍Spark机器学习入门·编程(scala/java/python)实现分析商店购买记录,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

本文转自:Spark机器学习入门·编程(scala/java/python)实现分析商店购买记录
http://www.aboutyun.com/forum.php?mod=viewthread&tid=20707

(出处: about云开发)



Spark安装目录

[Bash shell]  纯文本查看  复制代码
?
1
/Users/erichan/Garden/spark-1 .4.0-bin-hadoop2.6


基本测试

[Bash shell]  纯文本查看  复制代码
?
1
. /bin/run-example org.apache.spark.examples.SparkPi

[Bash shell]  纯文本查看  复制代码
?
1
MASTER= local [20] . /bin/run-example org.apache.spark.examples.SparkPi


scala

[Scala]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import org.apache.spark.SparkContextimport org.apache.spark.SparkContext. _
/**
* 用Scala编写的一个简单的Spark应用
*/
object ScalaApp {
在主函数里,我们要初始化所需的 SparkContext 对象,并且用它通过 textFile 函数来访问CSV数据文件。之后对每一行原始字符串以逗号为分隔符进行分割,提取出相应的用户名、产品和价格信息,从而完成对原始文本的映射 :
def main(args : Array[String]) {
val sc = new SparkContext( "local[2]" , "First Spark App" )
// 将CSV格式的原始数据转化为(user,product,price)格式的记录集
val data = sc.textFile( "data/UserPurchaseHistory.csv" )
.map(line = > line.split( "," ))
.map(purchaseRecord = > (purchaseRecord( 0 ), purchaseRecord( 1 ),
purchaseRecord( 2 )))
现在,我们有了一个RDD,其每条记录都由 (user, product, price) 三个字段构成。我们可以对商店计算如下指标 : 购买总次数 客户总个数 总收入 1.4 最畅销的产品
// 求购买次数
val numPurchases = data.count()
// 求有多少个不同客户购买过商品
val uniqueUsers = data.map{ case (user, product, price) = > user }.distinct().count()
// 求和得出总收入
val totalRevenue = data.map{ case (user, product, price) = > price.toDouble }.sum()
// 求最畅销的产品是什么
val productsByPopularity = data
.map{ case (user, product, price) = > (product, 1 ) }
.reduceByKey( _ + _ )
.collect()
.sortBy(- _ . _ 2 )
val mostPopular = productsByPopularity( 0 )
最后那段计算最畅销产品的代码演示了如何进行Map/Reduce模式的计算,该模式随Hadoop而流行。第一步,我们将 (user, product, price) 格式的记录映射为 (product, 1 ) 格式。然后,我们执行一个 reduceByKey 操作,它会对各个产品的 1 值进行求和。转换后的RDD包含各个商品的购买次数。有了这个RDD后,我们可以调用 collect 函数,这会将其计算结果以Scala集合的形式返回驱动程序。之后在驱动程序的本地对这些记录按照购买次数进行排序。(注意,在实际处理大量数据时,我们通常通过 sortByKey 这类操作来对其进行并行排序。) 最后,可在终端上打印出计算结果 :
println( "Total purchases: " + numPurchases)
println( "Unique users: " + uniqueUsers)
println( "Total revenue: " + totalRevenue)
println( "Most popular product: %s with %d purchases" .
format(mostPopular. _ 1 , mostPopular. _ 2 ))
}
}

可以在项目的主目录下执行 sbt run 命令来运行这个程序。如果你使用了IDE的话,也可以从Scala IDE直接运行。最终的输出应该与下面的内容相似:
...
[info] Compiling 1 Scala source to ...
[info] Running ScalaApp
...
14/01/30 10:54:40 INFO spark.SparkContext: Job finished: collect at
ScalaApp.scala:25, took 0.045181 s
Total purchases: 5
Unique users: 4
Total revenue: 39.91
Most popular product: iPhone Cover with 2 purchases


build.sbt


[Bash shell]  纯文本查看  复制代码
?
1
2
3
4
5
6
7
name := "scala-spark-app"
 
version := "1.0"
 
scalaVersion := "2.11.6"
 
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.4.0"


[Bash shell]  纯文本查看  复制代码
?
1
erichan:scala-spark-app/ $ sbt run


java 8


[Bash shell]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java. function .PairFunction;
import scala.Tuple2;
import java.util.List;
public class JavaApp {
     public static void main(String[] args) {
         JavaSparkContext sc = new JavaSparkContext( "local[2]" , "First Spark App" );
         JavaRDD<String[]> data = sc.textFile( "data/UserPurchaseHistory.csv" ).map(s -> s. split ( "," ));
         long numPurchases = data.count();
         long uniqueUsers = data.map(strings -> strings[0]).distinct().count();
         double totalRevenue = data.mapToDouble(strings -> Double.parseDouble(strings[2])). sum ();
 
         List<Tuple2<String, Integer>> pairs = data.mapToPair(
                 new PairFunction<String[], String, Integer>() {
                     @Override
                     public Tuple2<String, Integer> call(String[] strings) throws Exception {
                         return new Tuple2(strings[1], 1);
                     }
                 }
         ).reduceByKey((i1, i2) -> i1 + i2).collect();
         pairs. sort ((o1, o2) -> -(o1._2() - o2._2()));
 
         String mostPopular = pairs.get(0)._1();
         int purchases = pairs.get(0)._2();
         System.out.println( "Total purchases: " + numPurchases);
         System.out.println( "Unique users: " + uniqueUsers);
         System.out.println( "Total revenue: " + totalRevenue);
         System.out.println(String. format ( "Most popular product: %s with %d purchases" , mostPopular, purchases));
         sc.stop();
     }
}


Maven pom.xml


[XML]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
<? xml version = "1.0" encoding = "UTF-8" ?>
< project xmlns = "http://maven.apache.org/POM/4.0.0"
          xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0 [url]http://maven.apache.org/xsd/maven-4.0.0.xsd[/url]" >
     < modelVersion >4.0.0</ modelVersion >
 
     < groupId >java-spark-app</ groupId >
     < artifactId >java-spark-app</ artifactId >
     < version >1.0</ version >
 
     < dependencies >
         < dependency >
             < groupId >org.apache.spark</ groupId >
             < artifactId >spark-core_2.11</ artifactId >
             < version >1.4.0</ version >
         </ dependency >
     </ dependencies >
 
     < build >
         < plugins >
             < plugin >
                 < groupId >org.apache.maven.plugins</ groupId >
                 < artifactId >maven-compiler-plugin</ artifactId >
                 < version >3.1</ version >
                 < configuration >
                     < source >1.8</ source >
                     < target >1.8</ target >
                 </ configuration >
             </ plugin >
         </ plugins >
     </ build >
</ project >


python


[Python]  纯文本查看  复制代码
?
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
from pyspark import SparkContext
 
sc = SparkContext( "local[2]" , "First Spark App" )
data = sc.textFile( "data/UserPurchaseHistory.csv" ). map ( lambda line: line.split( "," )). map ( lambda record: (record[ 0 ], record[ 1 ], record[ 2 ]))
numPurchases = data.count()
uniqueUsers = data. map ( lambda record: record[ 0 ]).distinct().count()
totalRevenue = data. map ( lambda record: float (record[ 2 ])). sum ()
products = data. map ( lambda record: (record[ 1 ], 1.0 )).reduceByKey( lambda a, b: a + b).collect()
mostPopular = sorted (products, key = lambda x: x[ 1 ], reverse = True )[ 0 ]
 
print "Total purchases: %d" % numPurchases
print "Unique users: %d" % uniqueUsers
print "Total revenue: %2.2f" % totalRevenue
print "Most popular product: %s with %d purchases" % (mostPopular[ 0 ], mostPopular[ 1 ])
 
sc.stop()


[Python]  纯文本查看  复制代码
?
1
2
cd / Users / erichan / Garden / spark - 1.4 . 0 - bin - hadoop2. 6 / bin
. / spark - submit pythonapp.py

最后

以上就是慈祥烧鹅为你收集整理的Spark机器学习入门·编程(scala/java/python)实现分析商店购买记录的全部内容,希望文章能够帮你解决Spark机器学习入门·编程(scala/java/python)实现分析商店购买记录所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部