概述
#include <algorithm>
#include <bitset>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
using namespace std;
#define LEN 205
#define MOD 10000
struct INT
{
int num[LEN], len;
bool sign;
inline INT(long long x = 0)
{
*this = x;
}
inline INT(const string &str)
{
*this = str;
}
inline INT(const int a[], int b, bool c)
{
memcpy(num, a, sizeof num);
len = b; sign = c;
}
inline INT &operator =(const string &str)
{
int start = 0;
len = 0; sign = false;
memset(num, 0, sizeof num);
if (str[0] == '-') sign = true, start = 1;
while (str[start] == '0') start++;
for (int i = str.length() - 1; i >= start; i -= 4, len++)
for (int j = max(start, i - 3); j <= i; j++)
num[len] = (num[len] << 3) + (num[len] << 1) + str[j] - '0';
if (!len) sign = false;
if (len) len--;
return *this;
}
inline INT &operator =(long long x)
{
len = 0; sign = false;
memset(num, 0, sizeof num);
if (x < 0) sign = true, x = -x;
while (x)
num[len++] = x % MOD,
x /= MOD;
if (len) len--;
return *this;
}
inline int length() const
{
int re = len << 2, t = num[len];
while (t) t /= 10, re++;
return re;
}
inline void print()
{
if (sign) putchar('-');
printf("%d", num[len]);
for (int i = len - 1; i >= 0; i--)
printf("%04d", num[i]);
}
inline friend void print_to_string(const INT &x, string &y)
{
stringstream stream;
stream << x;
stream >> y;
}
inline friend INT pow(const INT &x, int y)
{
INT re = 1, _x = x;
while (y)
{
if (y & 1)
re *= _x;
y >>= 1;
_x *= _x;
}
return re;
}
inline friend INT pow(const INT &x, const INT &y)
{
INT re = 1, _x = x, _y = y;
while (_y != 0)
{
if (_y.num[0] & 1)
re *= _x;
_y = shr(_y);
_x *= _x;
}
return re;
}
inline friend istream &operator >>(istream &in, INT &x)
{
string str;
in >> str;
x = str;
return in;
}
inline friend ostream &operator <<(ostream &out, const INT &x)
{
if (x.sign) out << '-';
out << x.num[x.len];
for (int i = x.len - 1; i >= 0; i--)
out.fill('0'), out.width(4), out << x.num[i];
return out;
}
inline INT operator -() const
{
return INT(num, len, !sign);
}
inline friend INT abs(const INT &x)
{
return INT(x.num, x.len, false);
}
inline friend bool operator <(const INT &x, const INT &y)
{
if (x.sign ^ y.sign) return x.sign;
int lx = x.length(), ly = y.length();
if (lx == ly)
{
for (int i = x.len; i >= 0; i--)
if (x.num[i] != y.num[i])
return (x.num[i] < y.num[i])^x.sign;
return false;
}
return (lx < ly)^x.sign;
}
inline friend bool operator >(const INT &x, const INT &y) { return y < x; }
inline friend bool operator <=(const INT &x, const INT &y) { return !(y < x); }
inline friend bool operator >=(const INT &x, const INT &y) { return !(x < y); }
inline friend bool operator ==(const INT &x, const INT &y) { return !(x < y || y < x); }
inline friend bool operator !=(const INT &x, const INT &y) { return !(x == y); }
inline friend INT operator +(const INT &x, const INT &y)
{
if (x.sign ^ y.sign)
return x - (-y);
INT re;
re.sign = x.sign;
re.len = max(x.len, y.len);
for (int i = 0; i <= re.len; i++)
{
re.num[i] += x.num[i] + y.num[i];
re.num[i + 1] = re.num[i] / MOD;
re.num[i] %= MOD;
}
if (re.num[re.len + 1]) re.len++;
return re;
}
inline friend INT operator -(const INT &x, const INT &y)
{
if (x.sign ^ y.sign)
return x + (-y);
INT re, _x = x, _y = y;
re.sign = _x < _y;
if (re.sign ^ _x.sign)
swap(_x, _y);
for (int i = 0; i <= _x.len; i++)
{
re.num[i] += _x.num[i] - _y.num[i];
if (re.num[i] < 0)
re.num[i] += MOD,
re.num[i + 1]--;
}
re.len = _x.len;
while (!re.num[re.len] && re.len >= 0) re.len--;
return re;
}
inline friend INT operator *(const INT &x, const INT &y)
{
INT re, _x = x, _y = y;
while (_y != 0)
{
if (_y.num[0] & 1)
re += _x;
_y = shr(_y);
_x += _x;
}
if (y.sign) re.sign ^= 1;
return re;
}
inline friend INT operator /(const INT &x, const INT &y)
{
if ((!y.len && !y.num[0]) || (!x.len && !x.num[0]) || abs(x) < abs(y)) { return INT(); }
INT re, left, _y = abs(y);
re.sign = x.sign ^ y.sign;
re.len = x.len - y.len + 1;
left.len = -1;
for (int i = x.len; i >= 0; i--)
{
memmove(left.num + 1, left.num, sizeof(left.num) - sizeof(int));
left.len++;
left.num[0] = x.num[i];
int l = 0, r = MOD - 1, mid;
if (left < y) r = 1;
while (l < r)
{
mid = (l + r) >> 1;
INT t = mid;
if (t * _y <= left)
l = mid + 1;
else r = mid;
}
re.num[i] = r - 1;
INT t = r - 1;
left = left - (t * _y);
}
while (re.num[re.len] == 0 && re.len) re.len--;
return re;
}
inline friend INT operator %(const INT &x, const INT &y)
{
if ((!y.len && !y.num[0]) || (!x.len && !x.num[0])) { return INT(); }
INT left, _y = abs(y);
left.sign = (x.sign && !y.sign);
left.len = -1;
for (int i = x.len; i >= 0; i--)
{
memmove(left.num + 1, left.num, sizeof(left.num) - sizeof(int));
left.len++;
left.num[0] = x.num[i];
int l = 0, r = MOD - 1, mid;
while (l < r)
{
mid = (l + r) >> 1;
INT t = mid;
if (t * _y <= left)
l = mid + 1;
else r = mid;
}
INT t = r - 1;
left = left - (t * _y);
}
return left;
}
inline friend INT shr(const INT &x)
{
INT re;
re.len = x.len;
for (int i = re.len; i >= 0; i--)
{
if (x.num[i] & 1 && i - 1 >= 0)
re.num[i - 1] += MOD >> 1;
re.num[i] += x.num[i] >> 1;
}
if (re.len && !re.num[re.len]) re.len--;
return re;
}
INT &operator +=(const INT &x) { return *this = *this + x; }
INT &operator -=(const INT &x) { return *this = *this - x; }
INT &operator *=(const INT &x) { return *this = *this * x; }
INT &operator /=(const INT &x) { return *this = *this / x; }
INT &operator %=(const INT &x) { return *this = *this % x; }
};
int main()
{
}
最后
以上就是可靠丝袜为你收集整理的大数 线上下赛专用的全部内容,希望文章能够帮你解决大数 线上下赛专用所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复