概述
https://zhuanlan.zhihu.com/p/74462893
0. 爱因斯坦求和约定(Einstein Notation)
在数学中,爱因斯坦求和约定是一种标记法,也称为Einstein Summation Convention,在处理关于坐标的方程式时十分有效。简单来说,爱因斯坦求和就是简化掉求和式中的求和符号,即 [公式] ,这样就会使公式更加简洁,如
Numpy是Python中的一个重要的科学计算库,支持大量的多维数组计算,并提供了大量的运算函数库。Numpy率先将爱因斯坦求和以扩展函数的方式引入(np.einsum),而多维数组的特性又非常符合深度学习中张量(Tensor)的特性,因此,基于Numpy,TensorFlow、PyTorch等深度学习框架也纷纷将einsum作为其拓展函数,与Numpy相比,tf和torch中参与运算的张量具有梯度,可以进行反向传播。
对于张量/矩阵运算,einsum几乎无所不能,以下以Numpy为例,来说明其典型用法,PyTorch和TensorFlow中的用法大同小异。
1. 转置
import numpy as np
a = np.arange(0, 9).reshape(3, 3)
print(a)
b = np.einsum('ij->ji', a)
print(b)
Output:
a: [[0 1 2]
[3 4 5]
[6 7 8]]
b: [[0 3 6]
[1 4 7]
[2 5 8]]
2. 全部元素求和
import numpy as np
a = np.arange(0, 9).reshape(3, 3)
print(a)
b = np.einsum('ij->', a)
print(b)
Output:
a: [[0 1 2]
[3 4 5]
[6 7 8]]
b: 36
3. 某一维度求和
import numpy as np
a = np.arange(0, 9).reshape(3, 3)
print(a)
b = np.einsum('ij->i', a)
print(b)
Output:
a: [[0 1 2]
[3 4 5]
[6 7 8]]
b: [ 3 12 21]
4. 矩阵对应维度相乘(广播形式)
import numpy as np
a = np.arange(0, 12).reshape(3, 4)
print(a)
b = np.arange(0, 4).reshape(4)
print(b)
c = np.einsum('ij,j->ij', a, b)
print(c)
Output:
a: [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
b: [0 1 2 3]
c: [[ 0 1 4 9]
[ 0 5 12 21]
[ 0 9 20 33]]
5. 矩阵对应维度相乘(求和形式)
import numpy as np
a = np.arange(0, 12).reshape(3, 4)
print(a)
b = np.arange(0, 4).reshape(4)
print(b)
c = np.einsum('ij,j->i', a, b)
print(c)
Output:
a: [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
b: [0 1 2 3]
c: [14 38 62]
6. 矩阵点积
import numpy as np
a = np.arange(0, 12).reshape(3, 4)
print(a)
b = np.arange(0, 12).reshape(3, 4)
print(b)
c = np.einsum('ij,ij->', a, b)
print(c)
Output:
a: [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
b: [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
c: 506
7. 矩阵外积(相乘)
import numpy as np
a = np.arange(0, 12).reshape(3, 4)
print(a)
b = np.arange(0, 12).reshape(4, 3)
print(b)
c = np.einsum('ik,kj->ij', a, b)
print(c)
Output:
a: [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
b: [[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
c: [[ 42 48 54]
[114 136 158]
[186 224 262]]
8. Tensor实例中的应用(PyTorch)
情境如下:
有两个tensor A和B,size都是[16, 8, 5, 128, 128],想将两者的第2个维度,即size为5的维度,分别reshape为5x1和1x5的两个向量,然后计算外积,得到一个5x5的kernel。但是,在张量中进行这样的运算,同时保持其他维度不受影响,是比较困难的,而einsum可以完美就觉这种情况。
首先,A可以view成一个size为[18, 8, 5, 1, 128, 128]的tensor, 同理,B可以view为size为[16, 8, 1, 5, 128, 128]的tensor,此时,结果为可以表示为
这是一个复杂版的乘法,相对应的PyTorch代码如下:
import torch
A = torch.randn(16, 8, 5, 128, 128)
B = torch.randn(16, 8, 5, 128, 128)
print('A:', A.size())
print('B:', B.size())
A = A.unsqueeze(3)
B = B.unsqueeze(2)
print('Viewed A:', A.size())
print('Viewed B:', B.size())
C = torch.einsum('ijklno,ijlmno->ijkmno', [A, B])
print('C:', C.size())
Output:
A: torch.Size([16, 8, 5, 128, 128])
B: torch.Size([16, 8, 5, 128, 128])
Viewed A: torch.Size([16, 8, 5, 1, 128, 128])
Viewed B: torch.Size([16, 8, 1, 5, 128, 128])
C: torch.Size([16, 8, 5, 5, 128, 128])
欢迎关注知乎专栏【深度图像与视频增强】,一起交流、探讨计算机视觉中的一些问题。
最后
以上就是爱撒娇眼神为你收集整理的einsum爱因斯坦求和0. 爱因斯坦求和约定(Einstein Notation)1. 转置2. 全部元素求和3. 某一维度求和4. 矩阵对应维度相乘(广播形式)5. 矩阵对应维度相乘(求和形式)6. 矩阵点积7. 矩阵外积(相乘)8. Tensor实例中的应用(PyTorch)的全部内容,希望文章能够帮你解决einsum爱因斯坦求和0. 爱因斯坦求和约定(Einstein Notation)1. 转置2. 全部元素求和3. 某一维度求和4. 矩阵对应维度相乘(广播形式)5. 矩阵对应维度相乘(求和形式)6. 矩阵点积7. 矩阵外积(相乘)8. Tensor实例中的应用(PyTorch)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复