概述
在使用simulink仿真和其他语言编写的仿真模块合作时,总存在两种语言模块的数据交互的问题,本文考虑使用S-Function构建一个单独的通信模块,将该模块添加到simulink模型中,实现仿真数据的交互。
Matlab的simulink仿真有提供一个用户自定义模块,该模块可以用多种编程语言来实现,本文介绍:使用C++的Socket通信来编写代码,实现和Vc的交互。
1. VC++用户自定义模块的实现方法
a. 在模型中添加S-Function, 编写模块对应的函数代码
b、编译C++代码,在matlab中编译,需要先通过matlab命令行设置matlab的mex编译器,方法如下:
选择VS2005编译器,然后使用mex 命令来编译代码,命令格式:mex cppfile(模块对应的代码的文件名),编译成功会有相应的提示
c. 编译成功会产生一个后缀为mexw32的mex程序,有了这个程序,用户自定义模块就可以工作了
2. 例子
Demo说明:两个正弦输入信号经过mux模块集束成一个输入数组,经过自定义模块,最后到达Scope模块显示。在自定义模块(UseFunc)中,通过Socket采用UDP将输入数据发送到某个端口。
2.1 Simulink模型
S-Function代码:
UseFunc.h
/* Copyright 2003-2004 The MathWorks, Inc. */ #ifndef _SFUN_CPP_USER_DEFINE_CPP_ #define _SFUN_CPP_USER_DEFINE_CPP_ // Define a generic template that can accumulate // values of any numeric data type template <class DataType> class GenericAdder { private: DataType Peak; public: GenericAdder() { Peak = 0; } DataType AddTo(DataType Val) { Peak += Val; return Peak; } DataType GetPeak() { return Peak; } }; // Specialize the generic adder to a 'double' // data type adder class DoubleAdder : public GenericAdder<double> {}; #endif
UseFunc.cpp
/* Copyright 2003-2004 The MathWorks, Inc. */ // ******************************************************************* // **** To build this mex function use: mex sfun_cppcount_cpp.cpp **** // ******************************************************************* #include "UseFunc.h" #define S_FUNCTION_LEVEL 2 #define S_FUNCTION_NAME UseFunc // Need to include simstruc.h for the definition of the SimStruct and // its associated macro definitions. #include "simstruc.h" #include "mex.h" #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #include <winsock2.h> #include <Ws2tcpip.h> #include <stdio.h> // Link with ws2_32.lib #pragma comment(lib, "Ws2_32.lib") void UseFun_StartSock(SimStruct *S); void UseFun_SentData(SimStruct *S, const real_T *data, int DataNum); void UseFun_CloseSock(SimStruct *S); #define IS_PARAM_DOUBLE(pVal) (mxIsNumeric(pVal) && !mxIsLogical(pVal) && !mxIsEmpty(pVal) && !mxIsSparse(pVal) && !mxIsComplex(pVal) && mxIsDouble(pVal)) // Function: mdlInitializeSizes =============================================== // Abstract: // The sizes information is used by Simulink to determine the S-function // block's characteristics (number of inputs, outputs, states, etc.). static void mdlInitializeSizes(SimStruct *S) { // No expected parameters ssSetNumSFcnParams(S, 0); // Parameter mismatch will be reported by Simulink if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { return; } // Specify I/O if (!ssSetNumInputPorts(S, 1)) return; ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED); ssSetInputPortDirectFeedThrough(S, 0, 1); if (!ssSetNumOutputPorts(S,1)) return; ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED); ssSetNumSampleTimes(S, 1); // Reserve place for C++ object ssSetNumPWork(S, 3); ssSetOptions(S, SS_OPTION_WORKS_WITH_CODE_REUSE | SS_OPTION_EXCEPTION_FREE_CODE); } // Function: mdlInitializeSampleTimes ========================================= // Abstract: // This function is used to specify the sample time(s) for your // S-function. You must register the same number of sample times as // specified in ssSetNumSampleTimes. static void mdlInitializeSampleTimes(SimStruct *S) { ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); ssSetOffsetTime(S, 0, 0.0); ssSetModelReferenceSampleTimeDefaultInheritance(S); } // Function: mdlStart ======================================================= // Abstract: // This function is called once at start of model execution. If you // have states that should be initialized once, this is the place // to do it. #define MDL_START static void mdlStart(SimStruct *S) { // Store new C++ object in the pointers vector DoubleAdder *da = new DoubleAdder(); ssGetPWork(S)[0] = da; UseFun_StartSock(S); } // Function: mdlOutputs ======================================================= // Abstract: // In this function, you compute the outputs of your S-function // block. static void mdlOutputs(SimStruct *S, int_T tid) { // Retrieve C++ object from the pointers vector DoubleAdder *da = static_cast<DoubleAdder *>(ssGetPWork(S)[0]); // Get data addresses of I/O InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S,0); real_T *y = ssGetOutputPortRealSignal(S, 0); int InputNum = ssGetInputPortWidth(S, 0); for(int i=0;i<InputNum;i++) { y[i] = *u[i]; } UseFun_SentData(S, y, InputNum); } // Function: mdlTerminate ===================================================== // Abstract: // In this function, you should perform any actions that are necessary // at the termination of a simulation. For example, if memory was // allocated in mdlStart, this is the place to free it. static void mdlTerminate(SimStruct *S) { // Retrieve and destroy C++ object DoubleAdder *da = static_cast<DoubleAdder *>(ssGetPWork(S)[0]); delete da; UseFun_CloseSock(S); } void UseFun_StartSock(SimStruct *S) { int iResult; WSADATA wsaData; SOCKET *pSendSocket = new SOCKET; *pSendSocket = INVALID_SOCKET; sockaddr_in *pRecvAddr = new sockaddr_in; unsigned short Port = 27015; printf("Start socket communication, please wait...n"); //---------------------- // Initialize Winsock iResult = WSAStartup(MAKEWORD(2, 2), &wsaData); if (iResult != NO_ERROR) { printf("WSAStartup failed with error: %dn", iResult); return ; } //--------------------------------------------- // Create a socket for sending data *pSendSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (*pSendSocket == INVALID_SOCKET) { printf("socket failed with error: %ldn", WSAGetLastError()); WSACleanup(); return ; } //--------------------------------------------- // Set up the RecvAddr structure with the IP address of // the receiver (in this example case "192.168.1.1") // and the specified port number. pRecvAddr->sin_family = AF_INET; pRecvAddr->sin_port = htons(Port); pRecvAddr->sin_addr.s_addr = inet_addr("127.0.0.1"); ssGetPWork(S)[1] = pSendSocket; ssGetPWork(S)[2] = pRecvAddr; } void UseFun_SentData(SimStruct *S, const real_T *data, int DataNum) { int iResult; char SendBuf[1024]={'