我是靠谱客的博主 呆萌酸奶,最近开发中收集的这篇文章主要介绍Python——加密算法DES1. 加密算法DES介绍2. DES框架3. DES实现,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

1. 加密算法DES介绍

2. DES框架

2.1 DES的基础框架分析及介绍

2.1 IP置换以及IP逆置换

2.3 计算每一轮的子密钥

2.4 F函数及异或计算

2.4.1 E扩展置换

2.4.2 S盒代替

2.4.3 P盒置换

3. DES实现


1. 加密算法DES介绍

DES算法是一种经典的对称算法,即加密数据和解密数据用的密钥是同一个。

DES算法的最主要的内容有三个:Key、Data、Mode。

Key:密钥(密钥长度为64位二进制,即8个字节的长度。其中有8位是校验位)

Data:加密数据或解密数据(每64位即8字节位一块,按块进行加解密)

Mode:加密操作、解密操作

2. DES框架

2.1 DES的基础框架分析及介绍

可以在百度百科找到加密的流程图,如下:

由流程图我们可以得出,DES加密实现的基础框架内容:(明文二进制,每64位位一块,以其中的一块作为示例)

  1. 对明文二进制的一块进行IP置换
  2. 对IP置换后的数据进行切分,左32位 L0、右32位 R0
  3. 计算根据密钥计算每一轮的子密钥:K0、K1......、K15
  4. 获取得到下一轮的 Ln 与 Rn ,中间参与运算的有 Kn,以及计算函数 F 等。
  5. 重复步骤 4 操作16次
  6. 合并最后计算得到的 L15 与 R15,之后进行IP逆置换得到最后的密文

根据上面的框架内容:需要了解以下内容:

  • IP置换以及IP逆置换
  • 子密钥的计算方法
  • Rn 与 Kn 的计算函数 F ,以及函数计算得到的结果与 Ln-1 的操作(异或)

好的,根据前面的内容,一步一步了解,之后就可以搭建完整的框架了

2.1 IP置换以及IP逆置换

IP置换目的是将输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位。下面为IP置换表

58

50

42

34

26

18

10

2

60

52

44

36

28

20

12

4

62

54

46

38

30

22

14

6

64

56

48

40

32

24

16

8

57

49

41

33

25

17

9

1

59

51

43

35

27

19

11

3

61

53

45

37

29

21

13

5

63

55

47

39

31

23

15

7

置换的意思是将数据按照表中的数据更换数据。示例:
明文的二进制为:0100100101001100010011110101011001000101010110010100111101010101(ILOVEYOU:每个字符以8位转换)

那么明文的第 1 为 0 需要置换为第 58 位的值,即 1,同理每一位按置换表重新排列。

故:IP置换后的数据为:1111111110101000110111101111010100000000000000000110011101001100

同理IP逆置换也是一样的操作。

IP逆置换表如下:

40

8

48

16

56

24

64

32

39

7

47

15

55

23

63

31

38

6

46

14

54

22

62

30

37

5

45

13

53

21

61

29

36

4

44

12

52

20

60

28

35

3

43

11

51

19

59

27

34

2

42

10

50

18

58

26

33

1

41

9

49

17

57

25

2.3 计算每一轮的子密钥

DES的密钥每个字节的第8位作为奇偶校验位,密钥由64位减至56位。这56位的密钥由一下的密钥置换表获得。

密钥置换表:(没有8,16,24,32,40,48,56和64这8位)

57

49

41

33

25

17

9

1

58

50

42

34

26

18

10

2

59

51

43

35

27

19

11

3

60

52

44

36

63

55

47

39

31

23

15

7

62

54

46

38

30

22

14

6

61

53

45

37

29

21

13

5

28

20

12

4

在DES的每一轮的子密钥,从这56位密钥产生出不同的48位子密钥,确定这些子密钥的方式如下:

  1. 将56位的密钥分成两部分,每部分28位。
  2. 根据轮数,这两部分分别循环左移1位或2位。每轮移动的位数如下表:

轮数

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

位数

1

1

2

2

2

2

2

2

1

2

2

2

2

2

2

1

  移动后,又从56位中选出48位。置换了每位的顺序,最终确定子密钥。此过程称为密钥压缩置换。压缩置换规则如下表(注意表中没有9,18,22,25,35,38,43和54这8位):

14

17

11

24

1

5

3

28

15

6

21

10

23

19

12

4

26

8

16

7

27

20

13

2

41

52

31

37

47

55

30

40

51

45

33

48

44

49

39

56

34

53

46

42

50

36

29

32

2.4 F函数及异或计算

由流程图可以得知 F 函数参数有 Rn 以及 Kn。Rn的长度是32位,Kn的长度是48(Kn即为每一轮的子密钥)。

在这一块中,需要进行的操作比较多,也相对比较复杂,有以下的内容:

  1. E扩展置换:将右半部分数据Rn从32位置换成48位,之后与当前子密钥进行异或运算
  2. S盒代替:将48位数据代替为32位数据。共有8个S盒,将E置换得到的48位数据,分为8组,每组6位,每个盒子输入6位输出4位,组合得到32位
  3. P盒置换:S盒代替运算的32位输出按照P盒进行置换。该置换把输入的每位映射到输出位,任何一位不能被映射两次,也不能被略去。得到的数据还是32位的。

2.4.1 E扩展置换

扩展置置换目标是IP置换后获得的右半部分Rn,将32位输入扩展为48位(分为4位×8组)输出。

扩展置换目的有两个:生成与密钥相同长度的数据以进行异或运算;提供更长的结果,在后续的替代运算中可以进行压缩。

  扩展置换表如下:

32

1

2

3

4

5

4

5

6

7

8

9

8

9

10

11

12

13

12

13

14

15

16

17

16

17

18

19

20

21

20

21

22

23

24

25

24

25

26

27

28

29

28

29

30

31

32

1

表中的数字代表第几位,两列黄色数据是扩展的数据,可以看出,扩展的数据是从相邻两组分别取靠近的一位,4位变为6位。靠近32位的位为1,靠近1位的位为32。表中第二行的4取自上组中的末位,9取自下组中的首位。

扩展置换之后,右半部分数据Rn变为48位,与密钥置换得到的子密钥进行异或操作。

2.4.2 S盒代替

由P置换之后的数据与字密钥异或得到新的48位数据,将这个数据送人S盒,进行替代运算。替代由8个不同的S盒完成,每个S盒有6位输入4位输出。48位输入分为8个6位的分组,一个分组对应一个S盒,对应的S盒对各组进行代替操作。

每个S盒都是一个4行16列的表,盒中的每一项都是一个4位的数。S盒的6个输入确定了其对应的输出在哪一行哪一列,输入的高低两位做为行数H,中间四位做为列数L,在S盒中查找第H行L列对应的数据(<32)。

例如,假设输入为110011,第1位和第6位组合为11,对应于S盒的第3行;第2位到第5位为1001,对应于S盒的第9列。查找的第3行第9列的数字,如S盒1,因此用1111来代替110011。注意,S盒的行列计数都是从0开始。

代替过程产生8个4位的分组,在最后组合在一起形成32位数据。

以下为S盒的表:

S盒1

14

4

13

1

2

15

11

8

3

10

6

12

5

9

0

7

0

15

7

4

14

2

13

1

10

6

12

11

9

5

3

8

4

1

14

8

13

6

2

11

15

12

9

7

3

10

5

0

15

12

8

2

4

9

1

7

5

11

3

14

10

0

6

13

  S盒2

15

1

8

14

6

11

3

4

9

7

2

13

12

0

5

10

3

13

4

7

15

2

8

14

12

0

1

10

6

9

11

5

0

14

7

11

10

4

13

1

5

8

12

6

9

3

2

15

13

8

10

1

3

15

4

2

11

6

7

12

0

5

14

9

  S盒3

10

0

9

14

6

3

15

5

1

13

12

7

11

4

2

8

13

7

0

9

3

4

6

10

2

8

5

14

12

11

15

1

13

6

4

9

8

15

3

0

11

1

2

12

5

10

14

7

1

10

13

0

6

9

8

7

4

15

14

3

11

5

2

12

  S盒4

7

13

14

3

0

6

9

10

1

2

8

5

11

12

4

15

13

8

11

5

6

15

0

3

4

7

2

12

1

10

14

19

10

6

9

0

12

11

7

13

15

1

3

14

5

2

8

4

3

15

0

6

10

1

13

8

9

4

5

11

12

7

2

14

  S盒5

2

12

4

1

7

10

11

6

5

8

3

15

13

0

14

9

14

11

2

12

4

7

13

1

5

0

15

13

3

9

8

6

4

2

1

11

10

13

7

8

15

9

12

5

6

3

0

14

11

8

12

7

1

14

2

13

6

15

0

9

10

4

5

3

  S盒6

12

1

10

15

9

2

6

8

0

13

3

4

14

7

5

11

10

15

4

2

7

12

9

5

6

1

13

14

0

11

3

8

9

14

15

5

2

8

12

3

7

0

4

10

1

13

11

6

4

3

2

12

9

5

15

10

11

14

1

7

6

0

8

13

  S盒7

4

11

2

14

15

0

8

13

3

12

9

7

5

10

6

1

13

0

11

7

4

9

1

10

14

3

5

12

2

15

8

6

1

4

11

13

12

3

7

14

10

15

6

8

0

5

9

2

6

11

13

8

1

4

10

7

9

5

0

15

14

2

3

12

  S盒8

13

2

8

4

6

15

11

1

10

9

3

14

5

0

12

7

1

15

13

8

10

3

7

4

12

5

6

11

0

14

9

2

7

11

4

1

9

12

14

2

0

6

10

13

15

3

5

8

2

1

14

7

4

10

8

13

15

12

9

0

3

5

6

11

2.4.3 P盒置换

由S盒置换后得到的数据,进行P置换。P置换表如下:

16

7

20

21

29

12

28

17

1

15

23

26

5

18

31

10

2

8

24

14

32

27

3

9

19

13

30

6

22

11

4

25

3. DES实现

  根据第二部分DES的框架介绍,现在可以根据这些来实现DES算法。为了实现算法,将每以主要的步骤模块化,根据步骤,创建以下函数:

  1. __substitution(self, table:str, self_table:list)->str:置换函数,用于密钥置换、IP置换、P置换等
    
  2. __f_funtion(self, right:str, key:str)->str:F函数,right加密过程中的右半部分,key表示参与的子密钥。函数实现:对right进行E扩展,与key 进行异或操作,进入S盒替代,进行P置换,返回。
  3. __get_key_list(self)->list:返回加密过程中16轮的子密钥
  4. __xor_function(self, xor1:str, xor2:str)->str:异或操作返回结果
  5. __s_box(self, xor_result:str):进行S盒替代的函数,48位替换为32位
  6. __iteration(self, bin_plaintext:str, key_list:list):因为右半部分是操作了16轮,所以合并在一起组成一个函数,返回进行F函数以及和left异或操作之后的字符串。
  7. __bin2int(self, binary: str) -> list:由于加密之后的二进制无法直接转成字符,有不可见字符在,utf8可能无法解码,所以需要将二进制字符串每8位转成int型号列表,用于转成bytes再转hex
  8. __int2bin(self, list_int: list) -> str:将int类型的列表转成二进制串

对外提供的接口:

  1. str2bin(self, string: str) -> str:将明文转为二进制字符串:
  2. bin2str(self, binary: str) -> str:二进制字符串转成字符串
  3. modify_secretkey(self):修改默认密钥函数
  4. encode(self, plaintext):加密
  5. decode(self, ciphertext):解密
  6. main(self):测试函数
  7. 初始化内容:初始化各种置换表,以及默认密钥等

        全部代码:

import binascii

class ArrangeSimpleDES():
    def __init__(self):
        # 出初始化DES加密的参数
        self.ip = [
            58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
            62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
            57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
            61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7,
        ]  # ip置换

        self.ip1 = [
            40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
            38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
            36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
            34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25,
        ]  # 逆ip置换
        self.E = [
            32, 1, 2, 3, 4, 5,
            4, 5, 6, 7, 8, 9,
            8, 9, 10, 11, 12, 13,
            12, 13, 14, 15, 16, 17,
            16, 17, 18, 19, 20, 21,
            20, 21, 22, 23, 24, 25,
            24, 25, 26, 27, 28, 29,
            28, 29, 30, 31, 32, 1,
        ]  # E置换,将32位明文置换位48位
        self.P = [
            16, 7, 20, 21, 29, 12, 28, 17,
            1, 15, 23, 26, 5, 18, 31, 10,
            2, 8, 24, 14, 32, 27, 3, 9,
            19, 13, 30, 6, 22, 11, 4, 25,
        ]  # P置换,对经过S盒之后的数据再次进行置换
        # 设置默认密钥
        self.K = '0111010001101000011010010111001101101001011100110110100101110110'
        self.k1 = [
            57, 49, 41, 33, 25, 17, 9,
            1, 58, 50, 42, 34, 26, 18,
            10, 2, 59, 51, 43, 35, 27,
            19, 11, 3, 60, 52, 44, 36,
            63, 55, 47, 39, 31, 23, 15,
            7, 62, 54, 46, 38, 30, 22,
            14, 6, 61, 53, 45, 37, 29,
            21, 13, 5, 28, 20, 12, 4,
        ]  # 密钥的K1初始置换
        self.k2 = [
            14, 17, 11, 24, 1, 5, 3, 28,
            15, 6, 21, 10, 23, 19, 12, 4,
            26, 8, 16, 7, 27, 20, 13, 2,
            41, 52, 31, 37, 47, 55, 30, 40,
            51, 45, 33, 48, 44, 49, 39, 56,
            34, 53, 46, 42, 50, 36, 29, 32,
        ]

        self.k0 = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, ]  # 秘钥循环移位的位数

        self.S = [
            [
                0xe, 0x4, 0xd, 0x1, 0x2, 0xf, 0xb, 0x8, 0x3, 0xa, 0x6, 0xc, 0x5, 0x9, 0x0, 0x7,
                0x0, 0xf, 0x7, 0x4, 0xe, 0x2, 0xd, 0x1, 0xa, 0x6, 0xc, 0xb, 0x9, 0x5, 0x3, 0x8,
                0x4, 0x1, 0xe, 0x8, 0xd, 0x6, 0x2, 0xb, 0xf, 0xc, 0x9, 0x7, 0x3, 0xa, 0x5, 0x0,
                0xf, 0xc, 0x8, 0x2, 0x4, 0x9, 0x1, 0x7, 0x5, 0xb, 0x3, 0xe, 0xa, 0x0, 0x6, 0xd,
            ],
            [
                0xf, 0x1, 0x8, 0xe, 0x6, 0xb, 0x3, 0x4, 0x9, 0x7, 0x2, 0xd, 0xc, 0x0, 0x5, 0xa,
                0x3, 0xd, 0x4, 0x7, 0xf, 0x2, 0x8, 0xe, 0xc, 0x0, 0x1, 0xa, 0x6, 0x9, 0xb, 0x5,
                0x0, 0xe, 0x7, 0xb, 0xa, 0x4, 0xd, 0x1, 0x5, 0x8, 0xc, 0x6, 0x9, 0x3, 0x2, 0xf,
                0xd, 0x8, 0xa, 0x1, 0x3, 0xf, 0x4, 0x2, 0xb, 0x6, 0x7, 0xc, 0x0, 0x5, 0xe, 0x9,
            ],
            [
                0xa, 0x0, 0x9, 0xe, 0x6, 0x3, 0xf, 0x5, 0x1, 0xd, 0xc, 0x7, 0xb, 0x4, 0x2, 0x8,
                0xd, 0x7, 0x0, 0x9, 0x3, 0x4, 0x6, 0xa, 0x2, 0x8, 0x5, 0xe, 0xc, 0xb, 0xf, 0x1,
                0xd, 0x6, 0x4, 0x9, 0x8, 0xf, 0x3, 0x0, 0xb, 0x1, 0x2, 0xc, 0x5, 0xa, 0xe, 0x7,
                0x1, 0xa, 0xd, 0x0, 0x6, 0x9, 0x8, 0x7, 0x4, 0xf, 0xe, 0x3, 0xb, 0x5, 0x2, 0xc,
            ],
            [
                0x7, 0xd, 0xe, 0x3, 0x0, 0x6, 0x9, 0xa, 0x1, 0x2, 0x8, 0x5, 0xb, 0xc, 0x4, 0xf,
                0xd, 0x8, 0xb, 0x5, 0x6, 0xf, 0x0, 0x3, 0x4, 0x7, 0x2, 0xc, 0x1, 0xa, 0xe, 0x9,
                0xa, 0x6, 0x9, 0x0, 0xc, 0xb, 0x7, 0xd, 0xf, 0x1, 0x3, 0xe, 0x5, 0x2, 0x8, 0x4,
                0x3, 0xf, 0x0, 0x6, 0xa, 0x1, 0xd, 0x8, 0x9, 0x4, 0x5, 0xb, 0xc, 0x7, 0x2, 0xe,
            ],
            [
                0x2, 0xc, 0x4, 0x1, 0x7, 0xa, 0xb, 0x6, 0x8, 0x5, 0x3, 0xf, 0xd, 0x0, 0xe, 0x9,
                0xe, 0xb, 0x2, 0xc, 0x4, 0x7, 0xd, 0x1, 0x5, 0x0, 0xf, 0xa, 0x3, 0x9, 0x8, 0x6,
                0x4, 0x2, 0x1, 0xb, 0xa, 0xd, 0x7, 0x8, 0xf, 0x9, 0xc, 0x5, 0x6, 0x3, 0x0, 0xe,
                0xb, 0x8, 0xc, 0x7, 0x1, 0xe, 0x2, 0xd, 0x6, 0xf, 0x0, 0x9, 0xa, 0x4, 0x5, 0x3,
            ],
            [
                0xc, 0x1, 0xa, 0xf, 0x9, 0x2, 0x6, 0x8, 0x0, 0xd, 0x3, 0x4, 0xe, 0x7, 0x5, 0xb,
                0xa, 0xf, 0x4, 0x2, 0x7, 0xc, 0x9, 0x5, 0x6, 0x1, 0xd, 0xe, 0x0, 0xb, 0x3, 0x8,
                0x9, 0xe, 0xf, 0x5, 0x2, 0x8, 0xc, 0x3, 0x7, 0x0, 0x4, 0xa, 0x1, 0xd, 0xb, 0x6,
                0x4, 0x3, 0x2, 0xc, 0x9, 0x5, 0xf, 0xa, 0xb, 0xe, 0x1, 0x7, 0x6, 0x0, 0x8, 0xd,
            ],
            [
                0x4, 0xb, 0x2, 0xe, 0xf, 0x0, 0x8, 0xd, 0x3, 0xc, 0x9, 0x7, 0x5, 0xa, 0x6, 0x1,
                0xd, 0x0, 0xb, 0x7, 0x4, 0x9, 0x1, 0xa, 0xe, 0x3, 0x5, 0xc, 0x2, 0xf, 0x8, 0x6,
                0x1, 0x4, 0xb, 0xd, 0xc, 0x3, 0x7, 0xe, 0xa, 0xf, 0x6, 0x8, 0x0, 0x5, 0x9, 0x2,
                0x6, 0xb, 0xd, 0x8, 0x1, 0x4, 0xa, 0x7, 0x9, 0x5, 0x0, 0xf, 0xe, 0x2, 0x3, 0xc,
            ],
            [
                0xd, 0x2, 0x8, 0x4, 0x6, 0xf, 0xb, 0x1, 0xa, 0x9, 0x3, 0xe, 0x5, 0x0, 0xc, 0x7,
                0x1, 0xf, 0xd, 0x8, 0xa, 0x3, 0x7, 0x4, 0xc, 0x5, 0x6, 0xb, 0x0, 0xe, 0x9, 0x2,
                0x7, 0xb, 0x4, 0x1, 0x9, 0xc, 0xe, 0x2, 0x0, 0x6, 0xa, 0xd, 0xf, 0x3, 0x5, 0x8,
                0x2, 0x1, 0xe, 0x7, 0x4, 0xa, 0x8, 0xd, 0xf, 0xc, 0x9, 0x0, 0x3, 0x5, 0x6, 0xb,
            ],
        ]  # 16进制表示S盒的数据,S盒是为了将48位转换为32位,有8个盒子

    def __substitution(self, table: str, self_table: list) -> str:
        """
        :param table: 需要进行置换的列表,是一个01字符串
        :param self_table: 置换表,在__init__中初始化了
        :return: 返回置换后的01字符串
        """
        sub_result = ""
        for i in self_table:
            sub_result += table[i - 1]
        return sub_result

    def str2bin(self, string: str) -> str:
        """
        将明文转为二进制字符串:
        :param string: 任意字符串
        :return:二进制字符串
        """
        plaintext_list = list(bytes(string, 'utf8'))  # 将字符串转成bytes类型,再转成list
        result = []  # 定义返回结果
        for num in plaintext_list:
            result.append(bin(num)[2:].zfill(8))  # 将列表的每个元素转成二进制字符串,8位宽度
        return "".join(result)

    def bin2str(self, binary: str) -> str:
        """
        二进制字符串转成字符串
        :param binary:
        :return:
        """
        list_bin = [binary[i:i + 8] for i in range(0, len(binary), 8)]  # 对二进制字符串进行切分,每8位为一组
        list_int = []
        for b in list_bin:
            list_int.append(int(b, 2))  # 对二进制转成int
        result = bytes(list_int).decode()  # 将列表转成bytes,在进行解码,得到字符串
        return result

    def __bin2int(self, binary: str) -> list:
        """
        由于加密之后的二进制无法直接转成字符,有不可见字符在,utf8可能无法解码,所以需要将二进制字符串每8位转成int型号列表,用于转成bytes再转hex
        :param binary: 二进制字符串
        :return: int型列表
        """
        list_bin = [binary[i:i + 8] for i in range(0, len(binary), 8)]  # 对二进制字符串进行切分,每8位为一组
        list_int = []
        for b in list_bin:
            list_int.append(int(b, 2))
        return list_int

    def __int2bin(self, list_int: list) -> str:
        result = []
        for num in list_int:
            result.append(bin(num)[2:].zfill(8))
        return ''.join(result)

    def __get_block_list(self, binary: str) -> list:
        """
        对明文二进制串进行切分,每64位为一块,DES加密以64位为一组进行加密的
        :type binary: 二进制串
        """
        len_binary = len(binary)
        if len_binary % 64 != 0:
            binary_block = binary + ("0" * (64 - (len_binary % 64)))
            return [binary_block[i:i + 64] for i in range(0, len(binary_block), 64)]
        else:
            return [binary[j:j + 64] for j in range(0, len(binary), 64)]

    def modify_secretkey(self):
        """
        修改默认密钥函数
        :return: None
        """
        print('当前二进制形式密钥为:{}'.format(self.K))
        print("当前字符串形式密钥为:{}".format(self.bin2str(self.K)))
        newkey = input("输入新的密钥(长度为8):")
        if len(newkey) != 8:
            print("密钥长度不符合,请重新输入:")
            self.modify_secretkey()
        else:
            bin_key = self.str2bin(newkey)
            self.K = bin_key
            print("当前二进制形式密钥为:{}".format(self.K))

    def __f_funtion(self, right: str, key: str):
        """
        :param right: 明文二进制的字符串加密过程的右半段
        :param key: 当前轮数的密钥
        :return: 进行E扩展,与key异或操作,S盒操作后返回32位01字符串
        """
        # 对right进行E扩展
        e_result = self.__substitution(right, self.E)
        # 与key 进行异或操作
        xor_result = self.__xor_function(e_result, key)
        # 进入S盒子
        s_result = self.__s_box(xor_result)
        # 进行P置换
        p_result = self.__substitution(s_result, self.P)
        return p_result

    def __get_key_list(self):
        """
        :return: 返回加密过程中16轮的子密钥
        """
        key = self.__substitution(self.K, self.k1)
        left_key = key[0:28]
        right_key = key[28:56]
        keys = []
        for i in range(1, 17):
            move = self.k0[i - 1]
            move_left = left_key[move:28] + left_key[0:move]
            move_right = right_key[move:28] + right_key[0:move]
            left_key = move_left
            right_key = move_right
            move_key = left_key + right_key
            ki = self.__substitution(move_key, self.k2)
            keys.append(ki)
        return keys

    def __xor_function(self, xor1: str, xor2: str):
        """
        :param xor1: 01字符串
        :param xor2: 01字符串
        :return: 异或操作返回的结果
        """
        size = len(xor1)
        result = ""
        for i in range(0, size):
            result += '0' if xor1[i] == xor2[i] else '1'
        return result

    def __s_box(self, xor_result: str):
        """
        :param xor_result: 48位01字符串
        :return: 返回32位01字符串
        """
        result = ""
        for i in range(0, 8):
            # 将48位数据分为6组,循环进行
            block = xor_result[i * 6:(i + 1) * 6]
            line = int(block[0] + block[5], 2)
            colmn = int(block[1:4], 2)
            res = bin(self.S[i][line * colmn])[2:]
            if len(res) < 4:
                res = '0' * (4 - len(res)) + res
            result += res
        return result

    def __iteration(self, bin_plaintext: str, key_list: list):
        """
        :param bin_plaintext: 01字符串,64位
        :param key_list: 密钥列表,共16个
        :return: 进行F函数以及和left异或操作之后的字符串
        """
        left = bin_plaintext[0:32]
        right = bin_plaintext[32:64]
        for i in range(0, 16):
            next_lift = right
            f_result = self.__f_funtion(right, key_list[i])
            next_right = self.__xor_function(left, f_result)
            left = next_lift
            right = next_right
        bin_plaintext_result = left + right
        return bin_plaintext_result[32:] + bin_plaintext_result[:32]

    def encode(self, plaintext):
        """
        :param plaintext: 明文字符串
        :return: 密文字符串
        """
        bin_plaintext = self.str2bin(plaintext)
        bin_plaintext_block = self.__get_block_list(bin_plaintext)
        ciphertext_bin_list = []
        key_list = self.__get_key_list()
        for block in bin_plaintext_block:
            # 初代ip置换
            sub_ip = self.__substitution(block, self.ip)
            ite_result = self.__iteration(sub_ip, key_list)
            # 逆ip置换
            sub_ip1 = self.__substitution(ite_result, self.ip1)
            ciphertext_bin_list.append(sub_ip1)
        ciphertext_bin = ''.join(ciphertext_bin_list)
        result = self.__bin2int(ciphertext_bin)
        return bytes(result).hex().upper()

    def decode(self, ciphertext):
        '''
        :param ciphertext: 密文字符串
        :return: 明文字符串
        '''
        b_ciphertext = binascii.a2b_hex(ciphertext)
        bin_ciphertext = self.__int2bin(list(b_ciphertext))
        bin_plaintext_list = []
        key_list = self.__get_key_list()
        key_list = key_list[::-1]
        bin_ciphertext_block = [bin_ciphertext[i:i + 64] for i in range(0, len(bin_ciphertext), 64)]
        for block in bin_ciphertext_block:
            sub_ip = self.__substitution(block, self.ip)
            ite = self.__iteration(sub_ip, key_list)
            sub_ip1 = self.__substitution(ite, self.ip1)
            bin_plaintext_list.append(sub_ip1)
        bin_plaintext = ''.join(bin_plaintext_list).replace('00000000', '')
        return self.bin2str(bin_plaintext)

    def main(self):
        select = input("Please selecting:n1、Encryptiont 2、DecrpytionnYour selecting:")
        if select == '1':
            plaintext = input("Input plaintext:")
            # print("Your plaintext is:{}".format(plaintext))
            ciphertext = self.encode(plaintext)
            print("The ciphertext is:{}".format(ciphertext))
        elif select == '2':
            plaintext = input("Input ciphertext:")
            # print("Your ciphertext is:{}".format(plaintext))
            plaintext = self.decode(plaintext)
            print("The plaintext is:{}".format(plaintext))
            # print(len(plaintext))
        else:
            input("Please selecting again!")
            self.main()


if __name__ == '__main__':
    mydes = ArrangeSimpleDES()
    mydes.modify_secretkey()
    while True:
        mydes.main()
        print("")

运行结果:

 

最后

以上就是呆萌酸奶为你收集整理的Python——加密算法DES1. 加密算法DES介绍2. DES框架3. DES实现的全部内容,希望文章能够帮你解决Python——加密算法DES1. 加密算法DES介绍2. DES框架3. DES实现所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(60)

评论列表共有 0 条评论

立即
投稿
返回
顶部