概述
目录
????1 概述
????2 运行结果
????3 参考文献
????????4 Matlab代码
????1 概述
应用背景:
通过分析序列进行合理预测,做到提前掌握未来的发展趋势,为业务决策提供依据,这也是决策科学化的前提。
时间序列分析:
时间序列就是按时间顺序排列的一组数据序列。
时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。
一、时间序列分析简介
时间序列分析有三个基本特点:
- 假设事物发展趋势会延伸到未来
- 预测所依据的数据具有不规则性
- 不考虑事物发展之间的因果关系
????2 运行结果
????3 参考文献
[1]杨学威.基于机器学习算法的股指期货价格预测模型研究[J].软件工程,2022,25(12):1-8.DOI:10.19644/j.cnki.issn2096-1472.2022.012.001.
????????4 Matlab代码
%% Machine Learning Online Class - Exercise 1: Linear Regression
%
Instructions
%
------------
%
%
This file contains code that helps you get started on the
%
linear exercise. You will need to complete the following functions
%
in this exericse:
%
%
warmUpExercise.m
%
plotData.m
%
gradientDescent.m
%
computeCost.m
%
gradientDescentMulti.m
%
computeCostMulti.m
%
featureNormalize.m
%
normalEqn.m
%
%
For this exercise, you will not need to change any code in this file,
%
or any other files other than those mentioned above.
%
%
主函数部分代码:
%% Initialization
clear ; close all; clc
%% ======================= Part 2: Plotting =======================
fprintf('Plotting Data ...n')
data = load('P1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples
% Plot Data
% Note: You have to complete the code in plotData.m
plotData(X, y);
fprintf('Program paused. Press enter to continue.n');
pause;
%% =================== Part 3: Cost and Gradient descent ===================
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters
% Some gradient descent settings
iterations = 1500;
alpha = 0.01;
fprintf('nTesting the cost function ...n')
% compute and display initial cost
J = computeCost(X, y, theta);
fprintf('With theta = [0 ; 0]nCost computed = %fn', J);
% further testing of the cost function
J = computeCost(X, y, [-1 ; 2]);
fprintf('nWith theta = [-1 ; 2]nCost computed = %fn', J);
fprintf('Program paused. Press enter to continue.n');
pause;
fprintf('nRunning Gradient Descent ...n')
% run gradient descent
theta = gradientDescent(X, y, theta, alpha, iterations);
% print theta to screen
fprintf('Theta found by gradient descent:n');
fprintf('%fn', theta);
%fprintf('Expected theta values (approx)n');
% Plot the linear fit
hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure
fprintf('Program paused. Press enter to continue.n');
pause;
%% ============= Part 4: Visualizing J(theta_0, theta_1) =============
fprintf('Visualizing J(theta_0, theta_1) ...n')
% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100);
% initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals));
% Fill out J_vals
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end
最后
以上就是高兴小海豚为你收集整理的基于机器学习算法与历史数据预测未来的站点关闭(Matlab代码实现)的全部内容,希望文章能够帮你解决基于机器学习算法与历史数据预测未来的站点关闭(Matlab代码实现)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复