我是靠谱客的博主 知性鲜花,最近开发中收集的这篇文章主要介绍ECCV2020 超分辨论文(附论文链接),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

【1】Feature Representation Matters: End-to-End Learning for Reference-based Image Super-resolution

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123490222.pdf

 

【2】Semantic Object Prediction and Spatial Sound Super-Resolution with Binaural Sounds

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123490613.pdf

 

【3】Face Super-Resolution Guided by 3D Facial Priors

  • 论文链接:http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123490613.pdf

 

【4】SRFlow: Learning the Super-Resolution Space with Normalizing Flow

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123500698.pdf

 

【5】Across Scales & Across Dimensions: Temporal Super-Resolution using Deep Internal Learning

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520052.pdf

 

【6】Texture Hallucination for Large-Factor Painting Super-Resolution

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520205.pdf

 

【7】Component Divide-and-Conquer for Real-World Image Super-Resolution

  • 论文链接:http://lwww.ecva.net/papers/eccv_2020/papers_ECCV/papers/123530103.pdf

 

【8】MuCAN: Multi-Correspondence Aggregation Network for Video Super-Resolution

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123550341.pdf

 

【9】Scene Text Image Super-resolution in the wild

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123550647.pdf

 

【10】Scene Text Image Super-resolution in the wild

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123550647.pdf

 

【11】Video Super-Resolution with Recurrent Structure-Detail Network

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123570630.pdf

 

【12】PlugNet: Degradation Aware Scene Text Recognition Supervised by a Pluggable Super-Resolution Unit

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123600154.pdf

 

【13】Stochastic Frequency Masking to Improve Super-Resolution and Denoising Networks

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123610732.pdf

 

【14】Zero-Shot Image Super-Resolution with Depth Guided Internal Degradation Learning

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123620256.pdf

 

【15】LatticeNet: Towards Lightweight Image Super-resolution with Lattice Block

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123670273.pdf

 

【16】Spatial-Angular Interaction for Light Field Image Super-Resolution

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123680290.pdf

 

【17】VarSR: Variational Super-Resolution Network for Very Low Resolution Images

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123680426.pdf

 

【18】Learning with Privileged Information for Efficient Image Super-Resolution

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123690460.pdf

 

【19】Towards Content-Independent Multi-Reference Super-Resolution: Adaptive Pattern Matching and Feature Aggregation

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700052.pdf

 

【20】PAMS: Quantized Super-Resolution via Parameterized Max Scale

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123700562.pdf

 

【21】Journey Towards Tiny Perceptual Super-Resolution

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123710086.pdf

 

【22】Mining self-similarity: Label super-resolution with epitomic representations

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123710528.pdf

 

【23】Fast Adaptation to Super-Resolution Networks via Meta-Learning

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123720749.pdf

 

【24】Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution

  • 论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740205.pdf

最后

以上就是知性鲜花为你收集整理的ECCV2020 超分辨论文(附论文链接)的全部内容,希望文章能够帮你解决ECCV2020 超分辨论文(附论文链接)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(90)

评论列表共有 0 条评论

立即
投稿
返回
顶部