我是靠谱客的博主 健康人生,最近开发中收集的这篇文章主要介绍Python学习笔记 - 迭代器Iterator,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break
demo

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from collections import Iterable, Iterator

def g():
    yield 1
    yield 2
    yield 3

print('Iterable? [1, 2, 3]:', isinstance([1, 2, 3], Iterable))
print('Iterable? 'abc':', isinstance('abc', Iterable))
print('Iterable? 123:', isinstance(123, Iterable))
print('Iterable? g():', isinstance(g(), Iterable))

print('Iterator? [1, 2, 3]:', isinstance([1, 2, 3], Iterator))
print('Iterator? iter([1, 2, 3]):', isinstance(iter([1, 2, 3]), Iterator))
print('Iterator? 'abc':', isinstance('abc', Iterator))
print('Iterator? 123:', isinstance(123, Iterator))
print('Iterator? g():', isinstance(g(), Iterator))

# iter list:
print('for x in [1, 2, 3, 4, 5]:')
for x in [1, 2, 3, 4, 5]:
    print(x)

print('for x in iter([1, 2, 3, 4, 5]):')
for x in iter([1, 2, 3, 4, 5]):
    print(x)

print('next():')
it = iter([1, 2, 3, 4, 5])
print(next(it))
print(next(it))
print(next(it))
print(next(it))
print(next(it))

d = {'a': 1, 'b': 2, 'c': 3}

# iter each key:
print('iter key:', d)
for k in d.keys():
    print('key:', k)

# iter each value:
print('iter value:', d)
for v in d.values():
    print('value:', v)

# iter both key and value:
print('iter item:', d)
for k, v in d.items():
    print('item:', k, v)

# iter list with index:
print('iter enumerate(['A', 'B', 'C']')
for i, value in enumerate(['A', 'B', 'C']):
    print(i, value)

# iter complex list:
print('iter [(1, 1), (2, 4), (3, 9)]:')
for x, y in [(1, 1), (2, 4), (3, 9)]:
    print(x, y)




最后

以上就是健康人生为你收集整理的Python学习笔记 - 迭代器Iterator的全部内容,希望文章能够帮你解决Python学习笔记 - 迭代器Iterator所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(47)

评论列表共有 0 条评论

立即
投稿
返回
顶部