概述
acker -Pole placement design for single-input systems
Syntax
k = acker(A,b,p)
Description
k = acker(A,b,p)
Given the single-input system
and a vector p of desired closed-loop pole locations, acker (A,b,p) uses Ackermann's formula [1] to calculate a gain vector k such that the state feedback u = −kxplaces the closed-loop poles at the locations p. In other words, the eigenvalues of A − bk match the entries of p (up to ordering). Here A is the state transmitter matrix and b is the input to state transmission vector.
>> %Example 9.2 - State feedback gain calculation
>> A=[0 1 0; 0 0 1; -6 -11 -6];
>> p1=poly(A)
p1 =
1.0000 6.0000 11.0000 6.0000
>> P=[-3+3j -3-3j -6];
>> p2=poly(P) %the "alpha" coefficients
p2 =
1 12 54 108
>> p2-p1 %Ki as in Eq. (9-21)
ans =
0 6 43 102
>> %Now re-do using Ackermann's formula
>> B=[0; 0; 1];
>> acker(A,B,P)
ans =
102 43 6
>> %Redo Ackermann's formula using its definitions
>> M=[B A*B A^2*B]; %controllability matrix
>> ac=polyvalm(p2,A); %Eq.(9-23)
>> [0 0 1]*inv(M)*ac %Eq.(9-22)
ans =
102 43 6
最后
以上就是机智信封为你收集整理的acker - Pole placement design for single-input systems acker -Pole placement design for single-input systems的全部内容,希望文章能够帮你解决acker - Pole placement design for single-input systems acker -Pole placement design for single-input systems所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复