我是靠谱客的博主 虚心百合,最近开发中收集的这篇文章主要介绍Note《Anchored Neighborhood Regression for Fast Example-Based Super-Resolution》,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Note:

Anchored NeighborhoodRegression for Fast Example-Based Super-Resolution

 

1.        Abstract

a)        Propose fast super-resolutionmethods while making no compromise on quality

   i.             Support the use of sparselearned dictionaries in combination with neighbor embedding methods.

1).      Dictionary atomsßEuclidean distance

  ii.             Use global collaborative coding

  iii.             Propose the anchoredneighborhood regression

1).        Anchor the neighborhoodembedding

2).        Precompute the correspondingembedding matrix

2.        Introduction

a)        Defination of super-resolution

b)        Three subclasses

 i.             Interpilation methods

ii.             Multi-frame methods

iii.             Learning-based methods

1).        Gradient Profile Prior

2).        Dictionary- or example- learning methods

a)        Subdivided into patches

b)        Form a Markov Random Field(MRF)

c)        Search for nearest neighbors

d)        HR is retrieved

e)        MRF can be solved

3).        Downside

a)        High computational complexity

b)        Overcome:

  i.             Neighbor embedding

 ii.             Sparse encoding approaches

4).        Proposed example-basedsuper-resolution

a).             Low computational time

b).             Qualitative performance

c)        Organization

                         i.             Section 2:neighbor embedding& sparse coding

                       ii.             Section 3: proposed methods

                      iii.             Section 4:experimental results

                      iv.             Section 5:conclusions

3.        Dictionary-basedSuper-Resolution

a)        Neighbor embedding approaches

i.             Low-dimensional nonlinearmanifolds

 ii.             Locally linear embedding(LLE)

1.        Search for a set of K nearestneighbors

2.        Compute K appropriate weights

3.        Create HR patchs

4.        Create result HR image

                     iii.             Nonnegative neighbor embeddingapproaches

b)        Sparse coding approaches

i.             Effects: a learned compactdictionary

 ii.             

  iii.             sparsedictionaries:

  iv.             several modifications:

1).        different training approaches

2).        pseudoinverse(伪逆法)

3).        PCA

4).        Orthogonal matching pursuit

4.        Proposed Methods

a)        Global regression :special caseof ANR

 i.             

ii.             

  iii.             

  iv.             

 v.             

vi.             

b)        Anchored neighborhoodregression

5.        Experiments

a)        Conditions

 i.             Features

1).        Luminance component

2).        Basic feature: the patch

3).        First and second order derivative

ii.             Embeddings

 iii.             Dictionaries

1).        The larger the dictionary thebetter the performance

2).        “internal”dictionary,”external” dictionary

3).        Randomly sampled dictionaries,learned dictionaries

 iv.             Neighborhoods

b)        Performance

 i.             Quality

  ii.             Running times

6.        Conclusions              

a)        Propose a new example-basedmethod for super-resolution called Anchored Neighbor Regression

b)        Propose an extreme variantcalled Global Regression

c)        Most of these can reach asimilar top performance based on using the appropriate neighborhood size anddictionary

 

最后

以上就是虚心百合为你收集整理的Note《Anchored Neighborhood Regression for Fast Example-Based Super-Resolution》的全部内容,希望文章能够帮你解决Note《Anchored Neighborhood Regression for Fast Example-Based Super-Resolution》所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(65)

评论列表共有 0 条评论

立即
投稿
返回
顶部