我是靠谱客的博主 凶狠白猫,这篇文章主要介绍MapReduce实例 - partitioner 分区实现按号段统计手机号码,现在分享给大家,希望可以做个参考。

一、partitioner类

Partitioner 的功能是在 Map 端对 key 进行分区。Map端最终处理的<key,value>对需要发送到 Reduce 端去合并,合并的时候,相同分区的<key,value>对会被分配到同一个 Reduce 上,这个分配过程就是由 Partitioner(分区)决定的。
MapReduce 默认的Partitioner 是HashPartitioner。其计算方法如下:

  1. Partitioner 先计算 key 的散列值(通常是 MD5 值)。
  2. 通过 Reduce 个数执行取模运算:Key.hashCode%numReduce。

二、按号段统计手机号码

1、题目描述。
按号段统计手机号码,手机号前三位相同的统计数据单独放在一个结果中。统计方式按135字段、136字段、137字段、138字段、139字段及其其它号段分区,共6个分区。表信息如下:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200 1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200 1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 视频网站 15 12 1527 2106 200 1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200 1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200 1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 200 1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200 1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站点统计 24 9 6960 690 200 1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 200 1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站点统计 3 3 1938 180 200 1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200 1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200 1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 综合门户 15 12 1938 2910 200 1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200 1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 综合门户 57 102 7335 110349 200 1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 200 1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 200 1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200 1363157985066 13560436666 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157993055 13560436666 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200

2、关键代码:
1)Mobile 实体类

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
package cn.kgc.mr.partitioner; import org.apache.hadoop.io.Writable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; public class FlowBean implements Writable { private long upFlow; private long downFlow; private long sumFlow; /* 序列化 */ @Override public void write(DataOutput dataOutput) throws IOException { dataOutput.writeLong(upFlow); dataOutput.writeLong(downFlow); dataOutput.writeLong(sumFlow); } /* 反序列化 注意:序列化和反序列化字段的顺序需要保持一致 */ @Override public void readFields(DataInput dataInput) throws IOException { this.upFlow = dataInput.readLong(); this.downFlow = dataInput.readLong(); this.sumFlow = dataInput.readLong(); } public FlowBean(){ } public FlowBean(long upFlow, long downFlow, long sumFlow) { this.upFlow = upFlow; this.downFlow = downFlow; this.sumFlow = sumFlow; } //自己创建一个set方法 public void set(long upFlow ,long downFlow){ this.upFlow = upFlow; this.downFlow = downFlow; this.sumFlow = upFlow+downFlow; } @Override public String toString() { return "FlowBean{" + "upFlow=" + upFlow + ", downFlow=" + downFlow + ", sumFlow=" + sumFlow + '}'; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getDownFlow() { return downFlow; } public void setDownFlow(long downFlow) { this.downFlow = downFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } }

2)自定义分区

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
package cn.kgc.mr.partitioner; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Partitioner; public class ProvincePartitioner extends Partitioner<Text, FlowBean> { @Override public int getPartition(Text key, FlowBean value, int i) { String perNum = key.toString().substring(0,3); int partition = 4; if("136".equals(perNum)){ partition=0; }else if("137".equals(perNum)){ partition=1; }else if("138".equals(perNum)){ partition=2; }else if("139".equals(perNum)){ partition=3; } return partition; } }

3)MapReduce 功能

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
//Mapper类 package cn.kgc.mr.partitioner; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class FlowMapper extends Mapper<LongWritable, Text,Text, FlowBean> { Text k = new Text(); FlowBean v = new FlowBean(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //1、将文本转换成string String line = value.toString(); //2、将字符串切割 String[] fields = line.split("\s+"); //3、执行我们的业务逻辑 String phoneNumber = fields[1]; //取出上行和下行流量 long upFlow = Long.parseLong(fields[fields.length-3]) ; long dowmFlow = Long.parseLong(fields[fields.length-2]) ; k.set(phoneNumber); v.set(upFlow,dowmFlow); context.write(k,v); } } //Reduce类 package cn.kgc.mr.partitioner; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class FlowReduce extends Reducer<Text, FlowBean,Text, FlowBean> { FlowBean v = new FlowBean(); @Override protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException { //reduce的输入大概是这样的 ("13560439658", (FlowBean(918,4938),FlowBean(116,954))) //创建两个初始值,用于累加操作 long sum_upFlow = 0; long sum_downFlow = 0; //执行累加操作 for (FlowBean flowBean : values) { sum_upFlow += flowBean.getUpFlow(); sum_downFlow += flowBean.getDownFlow(); } //将结果写出 v.set(sum_upFlow,sum_downFlow); context.write(key,v); } } //Main 驱动类 package cn.kgc.mr.partitioner; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class FlowDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { //1、创建配置文件 Configuration conf = new Configuration(); Job job = Job.getInstance(conf,"flowCount"); //2、设置jar的位置 job.setJarByClass(FlowDriver.class); //3、设置map和reduce的位置 job.setMapperClass(FlowMapper.class); job.setReducerClass(FlowReduce.class); //设置分区位置 job.setPartitionerClass(ProvincePartitioner.class); //设置分区数量,大于,多余的分区会有空白文件 //1个全部输出在一个文件夹 //小于5大于1会报错 job.setNumReduceTasks(5);//5个或1个, //4、设置map输出的key,value类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); //5、设置reduce输出的key,value类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); //6、设置输出的路径 FileInputFormat.setInputPaths(job, new Path("file:///D:\Idea\ideaMaven\hadoopdfs1\data\fcinput")); FileOutputFormat.setOutputPath(job, new Path("file:///D:\Idea\ideaMaven\hadoopdfs1\data\partitionerOutput")); //7、提交程序运行 boolean result = job.waitForCompletion(true); System.out.println(result ? 0:1); } }

最后

以上就是凶狠白猫最近收集整理的关于MapReduce实例 - partitioner 分区实现按号段统计手机号码的全部内容,更多相关MapReduce实例内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(60)

评论列表共有 0 条评论

立即
投稿
返回
顶部