概述
1、前缀和
前缀和是指某序列的前n项和,可以把它理解为数学上的数列的前n项和,而差分可以看成前缀和的逆运算。合理的使用前缀和与差分,可以将某些复杂的问题简单化。
2、前缀和算法有什么好处?
先来了解这样一个问题:
输入一个长度为n的整数序列。接下来再输入m个询问,每个询问输入一对l, r。对于每个询问,输出原序列中从第l个数到第r个数的和。
我们很容易想出暴力解法,遍历区间求和。
代码如下:
int n,m; scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) scanf("%d",&a[i]); while(m--) { int l,r; int sum=0; scanf("%d%d",&l,&r); for(int i=l;i<=r;i++) { sum+=a[i]; } printf("%dn",sum); }
这样的时间复杂度为O(n*m)
,如果n
和m
的数据量稍微大一点就有可能超时,而我们如果使用前缀和的方法来做的话就能够将时间复杂度降到O(n+m)
,大大提高了运算效率。
具体做法:
首先做一个预处理,定义一个sum[]
数组,sum[i]
代表a
数组中前i
个数的和。
求前缀和运算:
const int N=1e5+10; int sum[N],a[N]; //sum[i]=a[1]+a[2]+a[3].....a[i]; for(int i=1;i<=n;i++) { sum[i]=sum[i-1]+a[i]; }
然后查询操作:
scanf("%d%d",&l,&r); printf("%dn", sum[r]-sum[l-1]);
对于每次查询,只需执行sum[r]-sum[l-1]
,时间复杂度为O(1)
原理
sum[r] =a[1]+a[2]+a[3]+a[l-1]+a[l]+a[l+1]......a[r];
sum[l-1]=a[1]+a[2]+a[3]+a[l-1];
sum[r]-sum[l-1]=a[l]+a[l+1]+......+a[r];
图解
这样,对于每个询问,只需要执行 sum[r]-sum[l-1]
。输出原序列中从第l
个数到第r个数的和的时间复杂度变成了O(1)
。
我们把它叫做一维前缀和。
总结:
练习一道题目
输入一个长度为n的整数序列。
接下来再输入m个询问,每个询问输入一对l, r。
对于每个询问,输出原序列中从第l个数到第r个数的和。
输入格式
第一行包含两个整数n和m。
第二行包含n个整数,表示整数数列。
接下来m行,每行包含两个整数l和r,表示一个询问的区间范围。
输出格式
共m行,每行输出一个询问的结果。
数据范围
1≤l≤r≤n,
1≤n,m≤100000,
−1000≤数列中元素的值≤1000
输入样例:
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例:
3
610
代码:
#include <iostream> using namespace std; const int N = 100010; int n, m; int a[N], s[N]; int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]); for (int i = 1; i <= n; i ++ ) s[i] = s[i - 1] + a[i]; // 前缀和的初始化 while (m -- ) { int l, r; scanf("%d%d", &l, &r); printf("%dn", s[r] - s[l - 1]); // 区间和的计算 } return 0; }
3、二维前缀和
如果数组变成了二维数组怎么办呢?
先给出问题:
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。对于每个询问输出子矩阵中所有数的和。
同一维前缀和一样,我们先来定义一个二维数组s[][]
, s[i][j]
表示二维数组中,左上角(1,1)
到右下角( i,j )
所包围的矩阵元素的和。接下来推导二维前缀和的公式。
先看一张图:
紫色面积是指(1,1)
左上角到(i,j-1)
右下角的矩形面积, 绿色面积是指(1,1)
左上角到(i-1, j )
右下角的矩形面积。每一个颜色的矩形面积都代表了它所包围元素的和。
从图中我们很容易看出,整个外围蓝色矩形面积s[i][j]
= 绿色面积s[i-1][j]
+ 紫色面积s[i][j-1]
- 重复加的红色的面积s[i-1][j-1]
+小方块的面积a[i][j]
;
因此得出二维前缀和预处理公式
s[i] [j] = s[i-1][j] + s[i][j-1 ] + a[i] [j] - s[i-1][ j-1]
接下来回归问题去求以(x1,y1)
为左上角和以(x2,y2)
为右下角的矩阵的元素的和。
如图:
紫色面积是指 ( 1,1 )
左上角到(x1-1,y2)
右下角的矩形面积 ,黄色面积是指(1,1)
左上角到(x2,y1-1)
右下角的矩形面积;
不难推出:
绿色矩形的面积 = 整个外围面积s[x2, y2]
- 黄色面积s[x2, y1 - 1]
- 紫色面积s[x1 - 1, y2]
+ 重复减去的红色面积 s[x1 - 1, y1 - 1]
因此二维前缀和的结论为:
以(x1, y1)
为左上角,(x2, y2)
为右下角的子矩阵的和为:
s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1]
总结:
练习一道完整题目:
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。
输出格式
共q行,每行输出一个询问的结果。
数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
代码:
#include<iostream> #include<cstdio> using namespace std; const int N=1010; int a[N][N],s[N][N]; int main() { int n,m,q; scanf("%d%d%d",&n,&m,&q); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) s[i][j]=s[i-1][j]+s[i][j-1]+a[i][j]-s[i-1][j-1]; while(q--) { int x1,y1,x2,y2; scanf("%d%d%d%d",&x1,&y1,&x2,&y2); printf("%dn",s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1]); } return 0; }
4、差分
5、一维差分
类似于数学中的求导和积分,差分可以看成前缀和的逆运算。
差分数组:
首先给定一个原数组a:a[1], a[2], a[3],,,,,, a[n];
然后我们构造一个数组b : b[1] ,b[2] , b[3],,,,,, b[i];
使得 a[i] = b[1] + b[2 ]+ b[3] +,,,,,, + b[i]
也就是说,a
数组是b
数组的前缀和数组,反过来我们把b
数组叫做a
数组的差分数组。换句话说,每一个a[i]
都是b
数组中从头开始的一段区间和。
考虑如何构造差分b
数组?
最为直接的方法
如下:
a[0 ]= 0;
b[1] = a[1] - a[0];
b[2] = a[2] - a[1];
b[3] =a [3] - a[2];
........
b[n] = a[n] - a[n-1];
图示:
我们只要有b
数组,通过前缀和运算,就可以在O(n)
的时间内得到a
数组 。
知道了差分数组有什么用呢? 别着急,慢慢往下看。
话说有这么一个问题:
给定区间[l ,r ]
,让我们把a
数组中的[ l, r]
区间中的每一个数都加上c
,
即 a[l] + c , a[l+1] + c , a[l+2] + c ,,,,,, a[r] + c;
暴力做法是for
循环l
到r
区间,时间复杂度O(n)
,如果我们需要对原数组执行m
次这样的操作,时间复杂度就会变成O(n*m)
。有没有更高效的做法吗? 考虑差分做法,(差分数组派上用场了)。
始终要记得,a数组是b数组的前缀和数组,比如对b
数组的b[i]
的修改,会影响到a
数组中从a[i]
及往后的每一个数。
首先让差分b
数组中的 b[l] + c
,通过前缀和运算,a
数组变成 a[l] + c ,a[l+1] + c,,,,,, a[n] + c;
然后我们打个补丁,b[r+1] - c
, 通过前缀和运算,a
数组变成 a[r+1] - c,a[r+2] - c,,,,,,,a[n] - c;
为啥还要打个补丁?
我们画个图理解一下这个公式的由来:
b[l] + c
,效果使得a
数组中 a[l]
及以后的数都加上了c
(红色部分),但我们只要求l
到r
区间加上c
, 因此还需要执行 b[r+1] - c
,让a
数组中a[r+1]
及往后的区间再减去c
(绿色部分),这样对于a[r]
以后区间的数相当于没有发生改变。
因此我们得出一维差分结论:给a
数组中的[ l, r]
区间中的每一个数都加上c
,只需对差分数组b
做 b[l] + = c
, b[r+1] - = c
。时间复杂度为O(1)
, 大大提高了效率。
总结:
题目练习: AcWing 797. 差分
输入一个长度为n的整数序列。
接下来输入m个操作,每个操作包含三个整数l, r, c,表示将序列中[l, r]之间的每个数加上c。
请你输出进行完所有操作后的序列。
输入格式
第一行包含两个整数n和m。
第二行包含n个整数,表示整数序列。
接下来m行,每行包含三个整数l,r,c,表示一个操作。
输出格式
共一行,包含n个整数,表示最终序列。
数据范围
1≤n,m≤100000,
1≤l≤r≤n,
−1000≤c≤1000,
−1000≤整数序列中元素的值≤1000
输入样例:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例:
3 4 5 3 4 2
AC代码
//差分 时间复杂度 o(m) #include<iostream> using namespace std; const int N=1e5+10; int a[N],b[N]; int main() { int n,m; scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) { scanf("%d",&a[i]); b[i]=a[i]-a[i-1]; //构建差分数组 } int l,r,c; while(m--) { scanf("%d%d%d",&l,&r,&c); b[l]+=c; //表示将序列中[l, r]之间的每个数加上c b[r+1]-=c; } for(int i=1;i<=n;i++) { b[i]+=b[i-1]; //求前缀和运算 printf("%d ",b[i]); } return 0; }
6、二维差分
如果扩展到二维,我们需要让二维数组被选中的子矩阵中的每个元素的值加上c
,是否也可以达到O(1)
的时间复杂度。答案是可以的,考虑二维差分。
a[][]
数组是b[][]
数组的前缀和数组,那么b[][]
是a[][]
的差分数组
原数组: a[i][j]
我们去构造差分数组: b[i][j]
使得a
数组中a[i][j]
是b
数组左上角(1,1)
到右下角(i,j)
所包围矩形元素的和。
如何构造b
数组呢?
其实关于差分数组,我们并不用考虑其构造方法,因为我们使用差分操作在对原数组进行修改的过程中,实际上就可以构造出差分数组。
同一维差分,我们构造二维差分数组目的是为了 让原二维数组a
中所选中子矩阵中的每一个元素加上c
的操作,可以由O(n*n)
的时间复杂度优化成O(1)
已知原数组a
中被选中的子矩阵为 以(x1,y1)
为左上角,以(x2,y2)
为右上角所围成的矩形区域;
始终要记得,a数组是b数组的前缀和数组,比如对b
数组的b[i][j]
的修改,会影响到a
数组中从a[i][j]
及往后的每一个数。
假定我们已经构造好了b
数组,类比一维差分,我们执行以下操作
来使被选中的子矩阵中的每个元素的值加上c
b[x1][y1] + = c;
b[x1,][y2+1] - = c;
b[x2+1][y1] - = c;
b[x2+1][y2+1] + = c;
每次对b
数组执行以上操作,等价于:
for(int i=x1;i<=x2;i++) for(int j=y1;j<=y2;j++) a[i][j]+=c;
我们画个图去理解一下这个过程:
b[x1][ y1 ] +=c
; 对应图1 ,让整个a
数组中蓝色矩形面积的元素都加上了c
。
b[x1,][y2+1]-=c
; 对应图2 ,让整个a
数组中绿色矩形面积的元素再减去c
,使其内元素不发生改变。
b[x2+1][y1]- =c
; 对应图3 ,让整个a
数组中紫色矩形面积的元素再减去c
,使其内元素不发生改变。
b[x2+1][y2+1]+=c
; 对应图4,让整个a
数组中红色矩形面积的元素再加上c
,红色内的相当于被减了两次,再加上一次c
,才能使其恢复。
我们将上述操作封装成一个插入函数:
void insert(int x1,int y1,int x2,int y2,int c) { //对b数组执行插入操作,等价于对a数组中的(x1,y1)到(x2,y2)之间的元素都加上了c b[x1][y1]+=c; b[x2+1][y1]-=c; b[x1][y2+1]-=c; b[x2+1][y2+1]+=c; }
我们可以先假想a
数组为空,那么b
数组一开始也为空,但是实际上a
数组并不为空,因此我们每次让以(i,j)
为左上角到以(i,j)
为右上角面积内元素(其实就是一个小方格的面积)去插入 c=a[i][j]
,等价于原数组a
中(i,j)
到(i,j)
范围内 加上了 a[i][j]
,因此执行n*m
次插入操作,就成功构建了差分b
数组.
这叫做曲线救国。
代码如下:
for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { insert(i,j,i,j,a[i][j]); //构建差分数组 } }
当然关于二维差分操作也有直接的构造方法,公式如下:
b[i][j]=a[i][j]−a[i−1][j]−a[i][j−1]+a[i−1][j−1]
二维差分数组的构造同一维差分思维相同,因次在这里就不再展开叙述了。
总结:
题目练习: AcWing 798. 差分矩阵
输入一个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1, y1, x2, y2, c,其中(x1, y1)和(x2, y2)表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上c。
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含5个整数x1, y1, x2, y2, c,表示一个操作。
输出格式
共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。
数据范围
1≤n,m≤1000,
1≤q≤100000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤c≤1000,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例:
2 3 4 1
4 3 4 1
2 2 2 2
AC代码:
include<iostream> #include<cstdio> using namespace std; const int N=1e3+10; int a[N][N],b[N][N]; void insert(int x1,int y1,int x2,int y2,int c) { b[x1][y1]+=c; b[x2+1][y1]-=c; b[x1][y2+1]-=c; b[x2+1][y2+1]+=c; } int main() { int n,m,q; cin>>n>>m>>q; for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) cin>>a[i][j]; for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { insert(i,j,i,j,a[i][j]); //构建差分数组 } } while(q--) { int x1,y1,x2,y2,c; cin>>x1>>y1>>x2>>y2>>c; insert(x1,y1,x2,y2,c); } for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1]; } } for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { printf("%d ",b[i][j]); } printf("n"); } return 0; }
以上就是通俗易懂的C++前缀和与差分算法图文详解的详细内容,更多关于C++前缀和与差分算法的资料请关注靠谱客其它相关文章!
最后
以上就是丰富铅笔为你收集整理的通俗易懂的C++前缀和与差分算法图文示例详解的全部内容,希望文章能够帮你解决通俗易懂的C++前缀和与差分算法图文示例详解所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复