一、图像融合简介
应用多模态图像的配准与融合技术,可以把不同状态的医学图像有机地结合起来,为临床诊断和治疗提供更丰富的信息。介绍了多模态医学图像配准与融合的概念、方法及意义。最后简单介绍了小波变换分析方法。
二、部分源代码
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148clear; close all; clc; warning off %% A Novel Multi-Modality Anatomical Image FusionMethod Based on Contrast and Structure Extraction % F = fuseImage(I,scale) %Inputs: %I - a mulyi-modal anatomical image sequence %scale - scale factor of dense SIFT, the default value is 16 %% load images from the folder that contain multi-modal image to be fused %I=load_images('./DatasetCT-MRIPair 1'); I=load_images('./DatasetMR-T1-MR-T2Pair 1'); %I=load_images('./DatasetMR-Gad-MR-T1Pair 1'); % Show source input images figure; no_of_images = size(I,4); for i = 1:no_of_images subplot(2,1,i); imshow(I(:,:,:,i)); end suptitle('Source Images'); %% F=fuseImage(I,16); %% Output: F - the fused image F=rgb2gray(F); figure; imshow(F); function [ F ] = fuseImage(I,scale) addpath('Pyramid_Decomposition'); addpath('Guided_Filter'); addpath('Dense_SIFT'); tic %% [H, W, C, N]=size(I); imgs=im2double(I); IA=zeros(H,W,C,N); for i=1:N IA(:,:,:,i)=enhnc(imgs(:,:,:,i)); end %% imgs_gray=zeros(H,W,N); for i=1:N imgs_gray(:,:,i)=rgb2gray(IA(:,:,:,i)); end % % %dense sift calculation dsifts=zeros(H,W,32,N, 'single'); for i=1:N img=imgs_gray(:,:,i); ext_img=img_extend(img,scale/2-1); [dsifts(:,:,:,i)] = DenseSIFT(ext_img, scale, 1); end %% %local contrast contrast_map=zeros(H,W,N); for i=1:N contrast_map(:,:,i)=sum(dsifts(:,:,:,i),3); end %winner-take-all weighted average strategy for local contrast [x, labels]=max(contrast_map,[],3); clear x; for i=1:N mono=zeros(H,W); mono(labels==i)=1; contrast_map(:,:,i)=mono; end %% Structure h = [1 -1]; structure_map=zeros(H,W,N); for i=1:N structure_map(:,:,i) = abs(conv2(imgs_gray(:,:,i),h,'same')) + abs(conv2(imgs_gray(:,:,i),h','same')); %EQ 13 end %winner-take-all weighted average strategy for structure [a, label]=max(structure_map,[],3); clear x; for i=1:N monoo=zeros(H,W); monoo(label==i)=1; structure_map(:,:,i)=monoo; end %% weight_map=structure_map.*contrast_map; %weight map refinement using Guided Filter for i=1:N weight_map(:,:,i) = fastGF(weight_map(:,:,i),12,0.25,2.5); end % normalizing weight maps % weight_map = weight_map + 10^-25; %avoids division by zero weight_map = weight_map./repmat(sum(weight_map,3),[1 1 N]); %% Pyramid Decomposition % create empty pyramid pyr = gaussian_pyramid(zeros(H,W,3)); nlev = length(pyr); % multiresolution blending for i = 1:N % construct pyramid from each input image % blend for b = 1:nlev w = repmat(pyrW{b},[1 1 3]); pyr{b} = pyr{b} + w .*pyrI{b}; end end % reconstruct F = reconstruct_laplacian_pyramid(pyr); toc end
三、运行结果
四、matlab版本
matlab版本
2014a
以上就是基于matlab对比度和结构提取的多模态解剖图像融合实现的详细内容,更多关于matlab 多模态解剖图像融合的资料请关注靠谱客其它相关文章!
最后
以上就是斯文钻石最近收集整理的关于基于matlab对比度和结构提取的多模态解剖图像融合实现的全部内容,更多相关基于matlab对比度和结构提取内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复