概述
在上图形学课的时候,学习了扫描线填充算法。不过在完成实验的时候在真正理解了该算法,在此记录一下,如果有表达上的错误,欢迎指正!
扫描线填充算法通过在与图形相交的第(1,2)、(3,4)... 边之间划线不断不断填充图形。因此,在扫描时就需要确定什么时候与图形的某条边相交、划线的时候x的范围是多少以及划线时是从哪个交点画至另一个交点。
结构体如下所示:
为了节省存储的空间,边表项也使用链表结构,将图形中ymin值相同的边链接在同一个边表项后,这样在扫描的时候方便添加。
具体的流程如下:
一、初始化活动边表
1. 统计并初始化表项
2. 将每条边分别链接在表项后
二、 绘制与填充
1. 取出当前与扫描线相交的边
① 取出ymin 大于当前扫描线的y值的边
② 删除ymax 小于等于当前扫描线的边(①②过程可以排除掉与扫描线平行的边)
2. 将取出的边按照左右顺序排序(根据边的最低点的坐标与直线的斜率判断)
3. 划线并直接在原结构上修改边的x值(因为是在一个函数内,修改保存的值仅限于函数内,并不影响main函数中的值)
具体的代码如下所示,使用的库是EasyX(可以在http://www.easyx.cn/下载):
#include "graphics.h" #include "stdio.h" #include "conio.h" #include <stdlib.h> #include <math.h> #include <cmath> #include <iostream> using namespace std; #define MAX_VOL 20 //多边形的边的数据结构 typedef struct Edge { int y_max, y_min; //该有向边的y坐标的最大值与最小值 double x, deltax; //该有向边的x的最小值以及x的变化的量(1/斜率) struct Edge* next; //指向下一条边的指针 }Edge; //活动边表表项 typedef struct TableItem { int curr_y; //该表项的y坐标值 ymin Edge *firstNode; //该表项的首个节点,如果没有,NULL struct TableItem *next; //指向下一个活动边表表项的指针 }TableItem; //活动边表结构体 typedef struct Table { TableItem *itemHeader; //活动边表的表项header int item_count; //活动边表表项的个数 }ET; class Point { private: int x1, x2, y1, y2; public: Point(int x1, int y1, int x2, int y2) { this->x1 = x1; this->x2 = x2; this->y1 = y1; this->y2 = y2; } //返回两个点之中的ymax int YMax() { return (y1 > y2 ? y1 : y2); } //返回ymin int YMin() { return (y1 < y2 ? y1 : y2); } //返回ymin 端点的x 值 int x() { return (y1 < y2 ? x1 : x2); } //返回直线的斜率,按照传入的参数的顺序 double KOfLine() { return ((y2 - y1)*1.0 / (x2 - x1)); } }; class Solution { public: //根据多边形初始化活动表 //参数 T 活动边表 //参数edges 用于初始化的边数组 //参数 edge_num 用于初始化的边的个数 void Init(ET &T, Edge *edges, int edge_num) { //初始化活动边表结构体 T.item_count = 0; T.itemHeader = NULL; int ymins[20]; //存储ymin ,决定活动边表的个数以及表项的内容 T.item_count = TableItemCount(edges, edge_num, ymins); T.itemHeader = (TableItem*)malloc(sizeof(TableItem)); T.itemHeader->curr_y = ymins[0]; T.itemHeader->firstNode = NULL; T.itemHeader->next = NULL; TableItem *p = T.itemHeader; //指向头结点 for (int i = 1; i<T.item_count; ++i) { //依次创建活动边表的各个表项,并连接在一起 TableItem *e = (TableItem*)malloc(sizeof(TableItem)); e->curr_y = ymins[i]; e->firstNode = NULL; e->next = NULL; p->next = e; p = e; } //按照用于初始化的边数组初始化活动边表 p = T.itemHeader; for (int j = 0; j < edge_num; ++j) { this->AppendNode(T, edges[j].y_min, edges[j]); } //方法结束 ////////测试区//////////// //cout << "遍历表项。。。。。" << endl; //p = T.itemHeader; //while (p != NULL) { // cout << "当前表项y : " << p->curr_y << endl; // Edge *ele = p->firstNode; // while (ele != NULL) { // cout << "表项中的边: x = " << ele->x << " y_min = " << ele->y_min << " y_max = " << ele->y_max << // "deltax = " << ele->deltax << endl; // ele = ele->next; // } // p = p->next; //} ////////测试删除结点//////// //p = T.itemHeader; //int yMax = 0; //while (yMax < 24) { // p = T.itemHeader; // cout << "-------------------------------" << endl; // cout << "当前y max :" << yMax << endl; // this->DeleteNode(T, yMax); // while (p != NULL) { // cout << "当前表项y : " << p->curr_y << endl; // Edge *ele = p->firstNode; // while (ele != NULL) { // cout << "表项中的边: x = " << ele->x << " y_min = " << ele->y_min << " y_max = " << ele->y_max << // "deltax = " << ele->deltax << endl; // ele = ele->next; // } // p = p->next; // } // yMax++; //} ///////////////////////// } //用于根据边数组计算需要多少个表项 //表项的个数取决于边的ymin的个数 //返回值 ymin 数组 //返回 item_num 表项的个数 int TableItemCount(Edge *edges, int edge_num, int* ymins) { int count = 0; for (int i = 0; i<edge_num; ++i) { if (!isInArray(ymins, edges[i].y_min, count)) { ymins[count++] = edges[i].y_min; } } //将ymin 升序排序 for (int j = 0; j<count - 1; ++j) { for (int k = j + 1; k<count; ++k) { if (ymins[k] < ymins[j]) { int tmp = ymins[k]; ymins[k] = ymins[j]; ymins[j] = tmp; } } } return count; } //判断一个整数是否在整数数组中 bool isInArray(int *array, int e, int array_length) { for (int i = 0; i<array_length; ++i) { if (array[i] == e) { return true; } } return false; } //传入edges数组,初始化,返回Edge 结构体数组 //因为需要是封闭图形,所以,在边数组中,最后的点的坐标设为起始点的坐标,传入的edge_num 不变 Edge* InitEdges(int *edges, int edge_num) { Edge *newEdges = (Edge*)malloc(sizeof(Edge)*edge_num); int j = 0; for (int i = 0; i<edge_num; ++i) { Point point(edges[2 * i], edges[2 * i + 1], edges[2 * (i + 1)], edges[2 * (i + 1) + 1]); Edge *newEdge = (Edge*)malloc(sizeof(Edge)); newEdge->x = (double)point.x(); newEdge->y_max = point.YMax(); newEdge->y_min = point.YMin(); newEdge->deltax = 1.0 / point.KOfLine(); // 斜率分之一 newEdge->next = NULL; newEdges[j++] = *(newEdge); } return newEdges; } //删除所有的小于ymax 的节点 //参数 curr_ymax 当前扫描线的y值 void DeleteNode(ET &T, int curr_ymax) { TableItem *p = T.itemHeader; //指向表项的指针 while (p != NULL) { Edge *item = p->firstNode; //指向表项的邻接链表的指针 Edge *itempre = p->firstNode; //指向前一个边结点的指针 while (item != NULL) { if (item->y_max <= curr_ymax) { //删除该结点 T.item_count--; //当前活动边表中的边的个数-1 //判断该结点是否是该链表的头结点 if (item == p->firstNode) { p->firstNode = (Edge*)malloc(sizeof(Edge)); p->firstNode = item->next; free(item); //释放该结点 item = p->firstNode; //重新指向firstnode结点 itempre = p->firstNode; } else { itempre->next = item->next; //修改前一个结点的next的值 free(item); //删除该指针 item = itempre->next; //继续向后遍历 } }//if (item->y_max < curr_ymax) else { itempre = item; item = item->next; } }//while (item != NULL) p = p->next; }//while (p != NULL) } //将指定y值的节点添加到该表项, 该方法插入的顺序取决于调用该方法传入参数的顺序 //该方法将新节点插入到对应表项的邻接链表的末尾 void AppendNode(ET &T, int place_y, Edge &e) { ////////测试区////////// //cout << "In Append , place_y = " << place_y << " e.ymin = " << e.y_min << endl; //cout << "item count" << T.item_count << endl; /////////////////////// TableItem *p = T.itemHeader; //指向活动边表的头结点 //将边e插入到对应的表项 //之后在该表项中按照x的大小确定插入的位置 for (int i = 0; i < T.item_count; ++i) { if (p->curr_y == e.y_min) break; p = p->next; } //将边插入到该表项的邻接链表中 Edge *egp = p->firstNode; //egp 指向该表项的首个邻接节点 if (egp == NULL) { //如果该表项还没有节点,直接插入 egp = (Edge*)malloc(sizeof(Edge)); *(egp) = e; egp->next = NULL; p->firstNode = egp; } else { Edge *pre = egp; while (egp != NULL) { pre = egp; egp = egp->next; } Edge *newedge = (Edge*)malloc(sizeof(Edge)); *(newedge) = e; pre->next = newedge; newedge->next = NULL; } } //绘图的方法 void Draw(ET T) { //首先取出ymin 值小于当前扫描线y 的边 //按照顺序配对 int curr_y = 0, curr_edge_num = 0, curr_gy = graphy(curr_y); //图形坐标的扫描线的y坐标 Edge *currEdges = (Edge*)malloc(sizeof(Edge) * 20); //用于存放指针的数组 //将每条边的记录的x 化为图形上的坐标 TableItem *p = T.itemHeader; while (p != NULL) { Edge *q = p->firstNode; while (q != NULL) { q->x = graphx(q->x); q = q->next; } p = p->next; } for (; curr_y < 30; curr_gy--, curr_y = realy(curr_gy)) { this->DeleteNode(T, curr_y); //删除当前扫描过的边(ymax 小于 curr_y) currEdges = this->GetCurrEdges(T, curr_y, curr_edge_num); //获取当前与扫描线相交的边 //对获取到的边进行排序、配对 for (int i = 0; i < curr_edge_num - 1; ++i) { for (int j = i + 1; j < curr_edge_num; ++j) { if (this->IsRightTo(currEdges[i], currEdges[j])) { Edge tmp = currEdges[i]; currEdges[i] = currEdges[j]; currEdges[j] = tmp; } } } //// // getchar(); // cout << "------------------------------" << endl; setcolor(BLUE); for (int j = 0; j < curr_edge_num / 2; ++j) { /// // cout << "line :" << (int)currEdges[2 * j].x << " , " << curr_y << "----->" << (int)currEdges[2 * j + 1].x << " , " << curr_y << // " edge_num = " << curr_edge_num << endl; line((int)currEdges[2 * j].x, curr_gy, (int)currEdges[2 * j + 1].x, curr_gy); Edge *curr_edge1 = this->GetThisEdge(T, currEdges[2 * j].x, currEdges[2 * j].y_min, currEdges[2 * j].y_max); //获取当前边的指针,修改x值,保存修改 curr_edge1->x += curr_edge1->deltax; Edge *curr_edge2 = this->GetThisEdge(T, currEdges[2 * j + 1].x, currEdges[2 * j + 1].y_min, currEdges[2 * j + 1].y_max); curr_edge2->x += curr_edge2->deltax; //line((int)currEdges[2 * j].x, curr_gy, (int)currEdges[2 * j + 1].x, curr_gy); //在两条直线之间划线 //currEdges[2 * j].x += currEdges[2 * j].deltax; //currEdges[2 * j + 1].x += currEdges[2 * j + 1].deltax; //更新x 的坐标值 } //////////测试模拟输出划线/////////////// /*cout << "------------------------------------------" << endl; cout << "curr_y = " << curr_y << endl; cout << "当前扫描的边的个数 = " << curr_edge_num << endl; for (int i = 0; i < curr_edge_num / 2; ++i) { cout << "draw line bwtwen :" << endl; cout << "直线1 x = " << currEdges[2 * i].x << " ymin = " << currEdges[2 * i].y_min << " ymax = " << currEdges[2 * i].y_max << endl; cout << "直线2 x = " << currEdges[2 * i + 1].x << " ymin = " << currEdges[2 * i + 1].y_min << " ymax = " << currEdges[2 * i + 1].y_max << endl; }*/ //////////////////////////////////// //在1,2 3,4 ... 边之间划线 //TODO 坐标转换以及划线 } ///////测试区///////////////// //cout << "-------------------------------------" << endl; //cout << "当前取出的边。。。。。。。。。。" << endl; //cout << "curr_edge_num = " << curr_edge_num << endl; //for (int i = 0; i < curr_edge_num; ++i) { // cout << "x = " << currEdges[i].x << " y_min = " << currEdges[i].y_min << " y_max = " << currEdges[i].y_max << endl; //} //////////////////////////////// } //返回某个边的指针 //可通过此指针修改原结构体中边的x的值 Edge* GetThisEdge(ET T, double x, int y_min, int y_max) { TableItem *p = T.itemHeader; while (p != NULL) { Edge *q = p->firstNode; while (q != NULL) { if ((q->x == x) && (q->y_max == y_max) && (q->y_min == y_min)) { return q; } q = q->next; } p = p->next; } return NULL; } //用于坐标转换的函数 double graphx(double x) { return x * 10 + 100; } double realx(double gx) { return (gx - 100)*1.0 / 10; } int graphy(int y) { return 400 - y * 10; } int realy(int gy) { return (400 - gy) / 10; } //绘制坐标系 void DrawCoordinate(int edges[], int edge_num) { line(100, 100, 100, 400); line(100, 400, 400, 400); outtextxy(85, 95, "y↑"); outtextxy(400, 393, "→x"); for (int i = 0; i < 30; ++i) { if (i % 2 != 0) continue; //TODO 字符转换 outtextxy(i * 10 + 100, 390, "|"); char *text = (char*)malloc(sizeof(char) * 10); itoa(i,text,10); outtextxy(i * 10 + 100, 410, text); free(text); } for (int j = 0; j < 30; ++j) { if (j % 2 != 0) continue; outtextxy(100, 400 - j * 10, "_"); char *str = (char*)malloc(sizeof(char)*10); itoa(j,str,10); outtextxy(100, 400 - j * 10,str); free(str); } //绘制原多边形 for (int k = 0; k < edge_num; ++k) { setcolor(YELLOW); int x1 = 0, x2 = 0, y1 = 0, y2 = 0; x1 = edges[2 * k] * 10 + 100; y1 = 400 - edges[2 * k + 1] * 10; x2 = edges[2 * (k + 1)] * 10 + 100; y2 = 400 - edges[2 * (k + 1) + 1] * 10; line(x1, y1, x2, y2); } } //获取当前的涉及的扫描线的边 //即取出当前ymin 小于curr_y的边 //通过参数返回取出的边的个数 Edge* GetCurrEdges(ET T, int curr_y, int &edge_num) { Edge *currEdges = (Edge*)malloc(sizeof(Edge) * 20); //分配最大容量 int i = 0; TableItem *p = T.itemHeader; while (p != NULL) { Edge *q = p->firstNode; while (q != NULL) { if (q->y_min <= curr_y) { //等于号很重要,否则会在图形中出现空白区 currEdges[i++] = *q; //将当前边的值取出(不改变原活动表) } q = q->next; } p = p->next; } edge_num = i; //保存取出的边的个数 return currEdges; } //判断edge1 是否在edge2 的右边的方法 bool IsRightTo(Edge edge1, Edge edge2) { if (edge1.x > edge2.x) //如果edge1最低点的x坐标小于edge2的最低点的x的坐标,则edge1在edge2的右边 return true; else { if (edge1.x < edge2.x) return false; double x_max1 = (edge1.y_max - (edge1.y_min - 1.0 / edge1.deltax*edge1.x))*edge1.deltax; double x_max2 = (edge2.y_max - (edge2.y_min - 1.0 / edge2.deltax*edge2.x))*edge2.deltax; if (x_max1 > x_max2) return true; } return false; } }; int main() { //TODO 测试活动边表初始化 Solution solution; int edges[] = { 4,18,14,14,26,22,26,10,14,2,4,6,4,18 }; Edge* newEdges = solution.InitEdges(edges, 6); ET T; solution.Init(T, newEdges, 6); //初始化活动边表 initgraph(800, 800, SHOWCONSOLE); solution.DrawCoordinate(edges, 6); solution.Draw(T); getchar(); closegraph(); return 0; }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持靠谱客。
最后
以上就是机灵煎饼为你收集整理的C/C++实现图形学扫描线填充算法的全部内容,希望文章能够帮你解决C/C++实现图形学扫描线填充算法所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复