我是靠谱客的博主 安详小蝴蝶,最近开发中收集的这篇文章主要介绍OpenCV实现帧差法检测运动目标,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

今天的目标是用OpenCV实现对运动目标的检测,这里选用三帧帧差法。代码如下:

#include <opencv2/opencv.hpp>
#include <cv.h>
#include <highgui.h>
#include <stdio.h>
#include <ctype.h>

double Threshold_index=0;
const int CONTOUR_MAX_AERA = 200;

void trackbar(int pos)
{
 Threshold_index=(double)pos;
}

int main(int argc, char* argv[])
{ 
 CvCapture *capture=cvCaptureFromCAM(0);
 int n_cnt=0;
 IplImage *img=NULL,
 *img_gray1=NULL,
 *img_gray2=NULL,
 *img_gray3=NULL,
 *img_diff1=NULL,
 *img_diff2=NULL,
 *img_diff_and=NULL,
 *img_binary=NULL,
 *img_dilate=NULL;
 CvMemStorage *stor;
 CvSeq *cont;

 stor=cvCreateMemStorage(0);
 cont=cvCreateSeq(CV_SEQ_ELTYPE_POINT,sizeof(CvSeq),sizeof(CvPoint),stor);

 cvNamedWindow("test",CV_WINDOW_AUTOSIZE);
 cvNamedWindow("dilate",CV_WINDOW_AUTOSIZE);
 img=cvQueryFrame(capture);
 img_gray1=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
 img_gray2=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
 img_gray3=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
 img_diff1=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
 img_diff2=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
 img_diff_and=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
 img_binary=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
 img_dilate=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);

 int index=1;
 cvCreateTrackbar("Threshold","test",&index,255,trackbar);

 while(img=cvQueryFrame(capture))
 {
 if(n_cnt%3==0)
  cvCvtColor(img,img_gray1,CV_BGR2GRAY);
 else if(n_cnt%3==1)
  cvCvtColor(img,img_gray2,CV_BGR2GRAY);
 else if(n_cnt%3==2)
  cvCvtColor(img,img_gray3,CV_BGR2GRAY);
 char c=(char)cvWaitKey(25);
 if(c==27)
  break;
 if(n_cnt>3)
 {
  cvAbsDiff(img_gray1,img_gray2,img_diff1);
  cvAbsDiff(img_gray2,img_gray3,img_diff2);
  cvAnd(img_diff1,img_diff2,img_diff_and);
  cvThreshold(img_diff_and,img_binary,Threshold_index,255,CV_THRESH_BINARY);
  cvShowImage("test",img_binary);

  cvDilate(img_binary,img_dilate);
  //cvShowImage("dilate",img_dilate);

  cvFindContours(img_dilate,stor,&cont,sizeof(CvContour),CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE,cvPoint(0,0));
  for(;cont;cont = cont->h_next)
  {
   CvRect r = ((CvContour*)cont)->rect;//子类转换为父类例子
   if(r.height * r.width > CONTOUR_MAX_AERA) // 面积小的方形抛弃掉
   {
    cvRectangle(img, cvPoint(r.x,r.y), 
     cvPoint(r.x + r.width, r.y + r.height),
     CV_RGB(255,0,0), 1, CV_AA,0);
   }
  }
  cvShowImage("dilate",img);
 }
 if(c=='s')
 {
  cvSaveImage("d:/img.bmp",img);
  cvSaveImage("d:/img_binary.bmp",img_dilate);
 }
 n_cnt++;
 }

 cvDestroyAllWindows();
 cvReleaseCapture(&capture);
 cvReleaseImage(&img_gray1);
 cvReleaseImage(&img_gray2);
 cvReleaseImage(&img_gray3);
 cvReleaseImage(&img_diff1);
 cvReleaseImage(&img_diff2);
 cvReleaseImage(&img_diff_and);
 cvReleaseImage(&img_binary);
 cvReleaseImage(&img_dilate);
 cvReleaseMemStorage(&stor);
 return 0;
}

下图是检测的运动目标二值化图像以及在实际图像中叠加的矩形框效果图。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持靠谱客。

最后

以上就是安详小蝴蝶为你收集整理的OpenCV实现帧差法检测运动目标的全部内容,希望文章能够帮你解决OpenCV实现帧差法检测运动目标所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(123)

评论列表共有 0 条评论

立即
投稿
返回
顶部