概述
在R语言普通的绘图中,使用par()
参数可以在一张图上实现不同变量的子图。如果我们想要用ggplot2
实现,则需要整理我们的原始数据,这通常是非常麻烦的,这时就需要用到我们的tidyr
来帮助我们绘图。
可能说上面一段话不是很容易理解,下面我们来举个栗子。
每个变量的密度分布情况
y1 <- rnorm(20) y2 <- rnorm(20) dat <- data.frame(y1, y2)
现有的数据集:
y1 y2 1 -0.12781723 -2.39376880 2 0.50074083 0.72555237 3 -0.02419456 0.94721701 4 -0.26366759 -0.60006759 5 1.13042618 -0.07591046 6 0.04313160 1.18677742 7 0.01180343 0.17627700 8 0.15208821 -0.12472391 9 -0.72690758 -1.92233170 10 1.04903577 -0.66208974 11 0.89689082 0.16331929 12 0.28471495 2.00629127 13 -0.26956768 -0.11897779 14 -0.81699454 -1.05575302 15 -0.65923768 1.20971004 16 0.18237270 1.55745467 17 -0.52359358 -0.74253496 18 1.36949647 1.07759474 19 -0.39882438 0.83915414 20 0.92084949 -1.04859906
目标绘图:
思考
我们要如何利用ggplot
达到上图的效果?
需要用数据集,将y1与y2分别整理到一个新的变量上,叫做var
;
里面所有的值也变成一个新的变量,叫做value
;
如果只有两个变量整理起来还比较简单,但如果变量一旦增多,整理起来相对就较为繁琐。所以这里推荐使用tidyr
包来进行整理。
其用起来也非常简单。
tidyr
使用如下代码,我们就可以整理成想要的结果:
dat %>% gather(y1, y2, key = "var", value = "value")
解释一下上述代码的含义:y1, y2
表示原本数据中的变量;key = "var"
表示转换之后,变量所在的那一列的名称为var;value = "value"
表示转换之后,原本的值所在的那一列的名称为value
输出结果如下:
var value 1 y1 -0.12781723 2 y1 0.50074083 3 y1 -0.02419456 4 y1 -0.26366759 5 y1 1.13042618 6 y1 0.04313160 7 y1 0.01180343 8 y1 0.15208821 9 y1 -0.72690758 10 y1 1.04903577 11 y1 0.89689082 12 y1 0.28471495 13 y1 -0.26956768 14 y1 -0.81699454 15 y1 -0.65923768 16 y1 0.18237270 17 y1 -0.52359358 18 y1 1.36949647 19 y1 -0.39882438 20 y1 0.92084949 21 y2 -2.39376880 22 y2 0.72555237 23 y2 0.94721701 24 y2 -0.60006759 25 y2 -0.07591046 26 y2 1.18677742 27 y2 0.17627700 28 y2 -0.12472391 29 y2 -1.92233170 30 y2 -0.66208974 31 y2 0.16331929 32 y2 2.00629127 33 y2 -0.11897779 34 y2 -1.05575302 35 y2 1.20971004 36 y2 1.55745467 37 y2 -0.74253496 38 y2 1.07759474 39 y2 0.83915414 40 y2 -1.04859906
用了上述结果,就可以非常简单地使用ggplot2进行画图了。
ggplot2进行绘图
我们可以直接使用管道数据的处理方式进行绘图,简便快捷:
dat %>% gather(y1, y2, key = "var", value = "value") %>% ggplot(aes(x = value)) + geom_histogram(aes(fill = factor(var), y = ..density..), alpha = 0.3, colour = 'black') + stat_density(geom = 'line', position = 'identity', size = 1.5, aes(colour = factor(var))) + facet_wrap(~ var, ncol = 2) + labs(y = '直方图与密度曲线', x = '值', title = '标题', fill = '变量') + theme(plot.title = element_text(hjust = 0.5)) + guides(color = FALSE)
这里基本都是前面的博客:R语言学习ggplot2绘制统计图形包全面详解 里面有提及到。
只有一个就是guides(color = FALSE)
,表示隐藏线颜色的图例,因为线的颜色我们是用color =
来指定的。同理如果要隐藏柱状图颜色的图例则使用 guides(fill = FALSE)
即可。
最终就可以得到我们的目标绘图了!
以上就是R语言可视化tidyr与ggplot2多个变量分层展示举例实现的详细内容,更多关于R语言可视化tidyr与ggplot2多个变量分层的资料请关注靠谱客其它相关文章!
最后
以上就是孤独大侠为你收集整理的R语言数据可视化tidyr与ggplot2多个变量分层展示举例实现的全部内容,希望文章能够帮你解决R语言数据可视化tidyr与ggplot2多个变量分层展示举例实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复