我是靠谱客的博主 动听蜗牛,最近开发中收集的这篇文章主要介绍R语言开发之输出折线图的操作,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

线形图是通过在多个点之间绘制线段来连接一系列点所形成的图形,这些点按其坐标(通常是x坐标)的值排序,并且它通常用于识别数据趋势。

在R中的通过使用plot()函数来创建线形图,语法如下:

plot(v,type,col,xlab,ylab)

参数描述如下:

v - 是包含数值的向量。

type - 取值“p”表示仅绘制点,“l”表示仅绘制线条,“o”表示仅绘制点和线。

xlab - 是x轴的标签。

ylab - 是y轴的标签。

main - 是图表的标题。

col - 用于绘制点和线两种颜色。

我们接下来尝试使用输入向量和类型参数为“O”创建一个简单的折线图,如下:

运行结果为:

我们再来通过使用附加参数来扩展折线图的功能,例如可以向点和线添加颜色,给图表标题,并在轴上添加标签,如下:

运行结果为:

最后再来尝试使用lines()函数在同一个图表上绘制多个线条,在绘制第一行之后,lines()函数可以使用附加向量作为输入来绘制图表中的第二行,如下:

运行结果为:

好啦,本次记录就到这里了。

补充:R语言基础图形绘制——折线图

简介

折线图通常用来对两个连续变量之间的相互依存关系进行可视化。x轴可以是连续型变量,也可以是离散型变量。生物学中,通常用来表示不同药物剂量下实验对象的变化,或者是基因在不同类型组织或细胞中的表达模式。

1. 基础函数

简单示例:使用plot()函数,改变参数type,更多类型请查看帮助文档。

# 查看作图数据
BOD
# Time demand
# 1 1 8.3
# 2 2 10.3
# 3 3 19.0
# 4 4 16.0
# 5 5 15.6
# 6 7 19.8
op <- par(no.readonly = T)
library(dplyr)
library(tidyverse)
par(mfrow = c(2,2))
BOD %>% {
 plot(demand ~ Time,data = .,type = "l",main = "A")
 plot(demand ~ Time,data = .,type = "b",main = "A")
 plot(demand ~ Time,data = .,type = "s",main = "A")
 plot(demand ~ Time,data = .,type = "o",main = "A")
}
par(op)

目前,基础函数绘制多个分组折线图,需要借助lines()函数。

op <- par(no.readonly = T)
library(dplyr)
library(tidyverse)
par(mar = c(rep(4,4)))
BOD %>% {
 plot(demand ~ Time,data = .,type = "l",col = "red",lwd = 2)
 lines(1:7,seq(8,20,length.out = 7),col = "steelblue",lwd = 2)
}
par(op)

多个分组时,可以借助for循环实现。

2. ggplot()函数

不加任何参数绘制简单折线图。

library(ggplot2)
BOD %>% {
 ggplot(.,aes(Time,demand))+geom_line()
}

library(ggplot2)
library(patchwork)
BOD %>% {
 p1 <- ggplot(.,aes(Time,demand))+geom_line()
 p2 <- ggplot(.,aes(factor(Time),demand,group = 1))+geom_line()
 p1 + p2
}

为了比较因子型和连续型变量的不同,我们将两张图放在一起,可以发现右图中并没有6这个水平。当 x 对应于因子型变量时,必须使用命令 aes(group=1) 以确保 ggplot() 知道这些数据点属于同一个分组,从而应该用一条折线连在一起。

相比于基础函数,ggplot绘制分组折线图简直不要太方便。%>%是管道符,需要加载dplyr包,**{}也可以理解为管道符,.**代表上一级生成的数据,p1 + p2 需要加载patchwork拼图包。

library(plyr)
ToothGrowth %>% 
 ddply(c("supp", "dose"), summarise, length=mean(len)) %>% {
 p1 <- ggplot(.,aes(x=dose, y=length, colour=supp)) + geom_line()
 p2 <- ggplot(.,aes(x=dose, y=length, linetype=supp)) + geom_line()
 p1 + p2
 }

如图,分别将supp映射给了颜色和线条类型。

如果要添加数据点等其他类型,可以通过geom系列函数实现。

来吧,实践吧!

3. 实践

我使用的是自己的小鼠早期胚胎卵母细胞到8细胞各时期的测序数据,挑选了大约3300个基因。纵坐标使用的是log2(FPKM)值。

一起来看看ggplot绘制分组折线图有多方便吧

首先需要将数据组织成长数据格式。

head(oo1_long)

x <- length(unique(oo1_long$t))
ggplot(data=oo1_long, aes(x=variable, y=value, group=t)) +
 geom_line(alpha = oo1_long$alpha,color = oo1_long$color,size = oo1_long$size)+
 theme_bw()+
 scale_y_continuous(expand = c(0,0))+
 scale_x_discrete(expand = c(0,0))+
 ylab(label = "log2(fpkm)")+
 xlab(label = "")+
 geom_text(aes(4,10.2,label =paste("cluster1-1", x-1 , sep = 'n')))

其实上面的代码还可以再优化,使用aes()函数设置color等参数。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持靠谱客。如有错误或未考虑完全的地方,望不吝赐教。

最后

以上就是动听蜗牛为你收集整理的R语言开发之输出折线图的操作的全部内容,希望文章能够帮你解决R语言开发之输出折线图的操作所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(81)

评论列表共有 0 条评论

立即
投稿
返回
顶部