我是靠谱客的博主 搞怪煎蛋,这篇文章主要介绍c# 实现模糊PID控制算法,现在分享给大家,希望可以做个参考。

跑起来的效果看每个类的test方法,自己调用来测试

目的是看看哪个算法好用,移植的时候比较单纯没有研究懂算法,代码结构也没改动,只是移植到C#方便查看代码和测试,大家要拷贝也很方便,把整个类拷贝到.cs文件即可

这段算法在实际值低于目标值是工作正常,超过后会有问题,不知道如何调教

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Text; using System.Threading.Tasks; namespace FuzzyPID { class FuzzyPID { public const int N = 7; double target; //系统的控制目标 double actual; //采样获得的实际值 double e; //误差 double e_pre_1; //上一次的误差 double e_pre_2; //上上次的误差 double de; //误差的变化率 double emax; //误差基本论域上限 double demax; //误差辩化率基本论域的上限 double delta_Kp_max; //delta_kp输出的上限 double delta_Ki_max; //delta_ki输出上限 double delta_Kd_max; //delta_kd输出上限 double Ke; //Ke=n/emax,量化论域为[-3,-2,-1,0,1,2,3] double Kde; //Kde=n/demax,量化论域为[-3,-2,-1,0,1,2,3] double Ku_p; //Ku_p=Kpmax/n,量化论域为[-3,-2,-1,0,1,2,3] double Ku_i; //Ku_i=Kimax/n,量化论域为[-3,-2,-1,0,1,2,3] double Ku_d; //Ku_d=Kdmax/n,量化论域为[-3,-2,-1,0,1,2,3] int[,] Kp_rule_matrix = new int[N, N];//Kp模糊规则矩阵 int[,] Ki_rule_matrix = new int[N, N];//Ki模糊规则矩阵 int[,] Kd_rule_matrix = new int[N, N];//Kd模糊规则矩阵 string mf_t_e; //e的隶属度函数类型 string mf_t_de; //de的隶属度函数类型 string mf_t_Kp; //kp的隶属度函数类型 string mf_t_Ki; //ki的隶属度函数类型 string mf_t_Kd; //kd的隶属度函数类型 double[] e_mf_paras; //误差的隶属度函数的参数 double[] de_mf_paras;//误差的偏差隶属度函数的参数 double[] Kp_mf_paras; //kp的隶属度函数的参数 double[] Ki_mf_paras; //ki的隶属度函数的参数 double[] Kd_mf_paras; //kd的隶属度函数的参数 double Kp; double Ki; double Kd; double A; double B; double C; public FuzzyPID(double e_max, double de_max, double kp_max, double ki_max, double kd_max, double Kp0, double Ki0, double Kd0) { emax = e_max; demax = de_max; delta_Kp_max = kp_max; delta_Ki_max = ki_max; delta_Kd_max = kd_max; e = target - actual; de = e - e_pre_1; Ke = (N / 2) / emax; Kde = (N / 2) / demax; Ku_p = delta_Kp_max / (N / 2); Ku_i = delta_Ki_max / (N / 2); Ku_d = delta_Kd_max / (N / 2); Kp = Kp0; Ki = Ki0; Kd = Kd0; A = Kp + Ki + Kd; B = -2 * Kd - Kp; C = Kd; } //三角隶属度函数 double trimf(double x, double a, double b, double c) { double u; if (x >= a && x <= b) u = (x - a) / (b - a); else if (x > b && x <= c) u = (c - x) / (c - b); else u = 0; return u; } //正态隶属度函数 double gaussmf(double x, double ave, double sigma) { double u; if (sigma < 0) { throw new Exception("In gaussmf, sigma must larger than 0"); } u = Math.Exp(-Math.Pow(((x - ave) / sigma), 2)); return u; } //梯形隶属度函数 double trapmf(double x, double a, double b, double c, double d) { double u; if (x >= a && x < b) u = (x - a) / (b - a); else if (x >= b && x < c) u = 1; else if (x >= c && x <= d) u = (d - x) / (d - c); else u = 0; return u; } //设置模糊规则Matrix public void setRuleMatrix(int[,] kp_m, int[,] ki_m, int[,] kd_m) { for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { Kp_rule_matrix[i, j] = kp_m[i, j]; Ki_rule_matrix[i, j] = ki_m[i, j]; Kd_rule_matrix[i, j] = kd_m[i, j]; } } //设置模糊隶属度函数的子函数 void setMf_sub(string type, double[] paras, int n) { int N_mf_e = 0, N_mf_de = 0, N_mf_Kp = 0, N_mf_Ki = 0, N_mf_Kd = 0; switch (n) { case 0: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_e = type; else throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf""); if (mf_t_e == "trimf") N_mf_e = 3; else if (mf_t_e == "gaussmf") N_mf_e = 2; else if (mf_t_e == "trapmf") N_mf_e = 4; e_mf_paras = new double[N * N_mf_e]; for (int i = 0; i < N * N_mf_e; i++) e_mf_paras[i] = paras[i]; break; case 1: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_de = type; else throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf""); if (mf_t_de == "trimf") N_mf_de = 3; else if (mf_t_de == "gaussmf") N_mf_de = 2; else if (mf_t_de == "trapmf") N_mf_de = 4; de_mf_paras = new double[N * N_mf_de]; for (int i = 0; i < N * N_mf_de; i++) de_mf_paras[i] = paras[i]; break; case 2: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_Kp = type; else throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf""); if (mf_t_Kp == "trimf") N_mf_Kp = 3; else if (mf_t_Kp == "gaussmf") N_mf_Kp = 2; else if (mf_t_Kp == "trapmf") N_mf_Kp = 4; Kp_mf_paras = new double[N * N_mf_Kp]; for (int i = 0; i < N * N_mf_Kp; i++) Kp_mf_paras[i] = paras[i]; break; case 3: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_Ki = type; else throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf""); if (mf_t_Ki == "trimf") N_mf_Ki = 3; else if (mf_t_Ki == "gaussmf") N_mf_Ki = 2; else if (mf_t_Ki == "trapmf") N_mf_Ki = 4; Ki_mf_paras = new double[N * N_mf_Ki]; for (int i = 0; i < N * N_mf_Ki; i++) Ki_mf_paras[i] = paras[i]; break; case 4: if (type == "trimf" || type == "gaussmf" || type == "trapmf") mf_t_Kd = type; else throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf""); if (mf_t_Kd == "trimf") N_mf_Kd = 3; else if (mf_t_Kd == "gaussmf") N_mf_Kd = 2; else if (mf_t_Kd == "trapmf") N_mf_Kd = 4; Kd_mf_paras = new double[N * N_mf_Kd]; for (int i = 0; i < N * N_mf_Kd; i++) Kd_mf_paras[i] = paras[i]; break; default: break; } } //设置模糊隶属度函数的类型和参数 public void setMf(string mf_type_e, double[] e_mf, string mf_type_de, double[] de_mf, string mf_type_Kp, double[] Kp_mf, string mf_type_Ki, double[] Ki_mf, string mf_type_Kd, double[] Kd_mf) { setMf_sub(mf_type_e, e_mf, 0); setMf_sub(mf_type_de, de_mf, 1); setMf_sub(mf_type_Kp, Kp_mf, 2); setMf_sub(mf_type_Ki, Ki_mf, 3); setMf_sub(mf_type_Kd, Kd_mf, 4); } //实现模糊控制 public double realize(double t, double a) { double[] u_e = new double[N], u_de = new double[N], u_u = new double[N]; int[] u_e_index = new int[3], u_de_index = new int[3];//假设一个输入最多激活3个模糊子集 double delta_Kp, delta_Ki, delta_Kd; double delta_u; target = t; actual = a; e = target - actual; de = e - e_pre_1; e = Ke * e; de = Kde * de; /* 将误差e模糊化*/ int j = 0; for (int i = 0; i < N; i++) { if (mf_t_e == "trimf") u_e[i] = trimf(e, e_mf_paras[i * 3], e_mf_paras[i * 3 + 1], e_mf_paras[i * 3 + 2]);//e模糊化,计算它的隶属度 else if (mf_t_e == "gaussmf") u_e[i] = gaussmf(e, e_mf_paras[i * 2], e_mf_paras[i * 2 + 1]);//e模糊化,计算它的隶属度 else if (mf_t_e == "trapmf") u_e[i] = trapmf(e, e_mf_paras[i * 4], e_mf_paras[i * 4 + 1], e_mf_paras[i * 4 + 2], e_mf_paras[i * 4 + 3]);//e模糊化,计算它的隶属度 if (u_e[i] != 0) u_e_index[j++] = i; //存储被激活的模糊子集的下标,可以减小计算量 } for (; j < 3; j++) u_e_index[j] = 0; //富余的空间填0 /*将误差变化率de模糊化*/ j = 0; for (int i = 0; i < N; i++) { if (mf_t_de == "trimf") u_de[i] = trimf(de, de_mf_paras[i * 3], de_mf_paras[i * 3 + 1], de_mf_paras[i * 3 + 2]);//de模糊化,计算它的隶属度 else if (mf_t_de == "gaussmf") u_de[i] = gaussmf(de, de_mf_paras[i * 2], de_mf_paras[i * 2 + 1]);//de模糊化,计算它的隶属度 else if (mf_t_de == "trapmf") u_de[i] = trapmf(de, de_mf_paras[i * 4], de_mf_paras[i * 4 + 1], de_mf_paras[i * 4 + 2], de_mf_paras[i * 4 + 3]);//de模糊化,计算它的隶属度 if (u_de[i] != 0) u_de_index[j++] = i; //存储被激活的模糊子集的下标,可以减小计算量 } for (; j < 3; j++) u_de_index[j] = 0; //富余的空间填0 double den = 0, num = 0; /*计算delta_Kp和Kp*/ for (int m = 0; m < 3; m++) for (int n = 0; n < 3; n++) { num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Kp_rule_matrix[u_e_index[m], u_de_index[n]]; den += u_e[u_e_index[m]] * u_de[u_de_index[n]]; } delta_Kp = num / den; delta_Kp = Ku_p * delta_Kp; if (delta_Kp >= delta_Kp_max) delta_Kp = delta_Kp_max; else if (delta_Kp <= -delta_Kp_max) delta_Kp = -delta_Kp_max; Kp += delta_Kp; if (Kp < 0) Kp = 0; /*计算delta_Ki和Ki*/ den = 0; num = 0; for (int m = 0; m < 3; m++) for (int n = 0; n < 3; n++) { num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Ki_rule_matrix[u_e_index[m], u_de_index[n]]; den += u_e[u_e_index[m]] * u_de[u_de_index[n]]; } delta_Ki = num / den; delta_Ki = Ku_i * delta_Ki; if (delta_Ki >= delta_Ki_max) delta_Ki = delta_Ki_max; else if (delta_Ki <= -delta_Ki_max) delta_Ki = -delta_Ki_max; Ki += delta_Ki; if (Ki < 0) Ki = 0; /*计算delta_Kd和Kd*/ den = 0; num = 0; for (int m = 0; m < 3; m++) for (int n = 0; n < 3; n++) { num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Kd_rule_matrix[u_e_index[m], u_de_index[n]]; den += u_e[u_e_index[m]] * u_de[u_de_index[n]]; } delta_Kd = num / den; delta_Kd = Ku_d * delta_Kd; if (delta_Kd >= delta_Kd_max) delta_Kd = delta_Kd_max; else if (delta_Kd <= -delta_Kd_max) delta_Kd = -delta_Kd_max; Kd += delta_Kd; if (Kd < 0) Kd = 0; A = Kp + Ki + Kd; B = -2 * Kd - Kp; C = Kd; delta_u = A * e + B * e_pre_1 + C * e_pre_2; delta_u = delta_u / Ke; if (delta_u >= 0.95 * target) delta_u = 0.95 * target; else if (delta_u <= -0.95 * target) delta_u = -0.95 * target; e_pre_2 = e_pre_1; e_pre_1 = e; return delta_u; } void showMf(string type, double[] mf_paras) { int tab = 0; if (type == "trimf") tab = 2; else if (type == "gaussmf") tab = 1; else if (type == "trapmf") tab = 3; this.WriteLine($"函数类型:{mf_t_e}"); this.WriteLine("函数参数列表:"); double[] p = mf_paras; for (int i = 0; i < N * (tab + 1); i++) { this.Write(p[i] + " "); if (i % (tab + 1) == tab) this.Write("rn"); } } public void showInfo() { this.WriteLine("Info of this fuzzy controller is as following:"); this.WriteLine($"基本论域e:[{-emax},{emax}]"); this.WriteLine($"基本论域de:[{-demax},{demax}]"); this.WriteLine($"基本论域delta_Kp:[{-delta_Kp_max},{delta_Kp_max}]"); this.WriteLine($"基本论域delta_Ki:[{-delta_Ki_max},{delta_Ki_max}]"); this.WriteLine($"基本论域delta_Kd:[{-delta_Kd_max},{delta_Kd_max}]"); this.WriteLine("误差e的模糊隶属度函数参数:"); showMf(mf_t_e, e_mf_paras); this.WriteLine("误差变化率de的模糊隶属度函数参数:"); showMf(mf_t_de, de_mf_paras); this.WriteLine("delta_Kp的模糊隶属度函数参数:"); showMf(mf_t_Kp, Kp_mf_paras); this.WriteLine("delta_Ki的模糊隶属度函数参数:"); showMf(mf_t_Ki, Ki_mf_paras); this.WriteLine("delta_Kd的模糊隶属度函数参数:"); showMf(mf_t_Kd, Kd_mf_paras); this.WriteLine("模糊规则表:"); this.WriteLine("delta_Kp的模糊规则矩阵"); for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { this.Write(Kp_rule_matrix[i, j]); } this.Write("rn"); } this.WriteLine("delta_Ki的模糊规则矩阵"); ; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { this.WriteLine(Ki_rule_matrix[i, j]); } WriteEnd(); } this.WriteLine("delta_Kd的模糊规则矩阵"); ; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { this.WriteLine(Kd_rule_matrix[i, j]); } WriteEnd(); } this.WriteLine($"误差的量化比例因子Ke={Ke}"); this.WriteLine($"误差变化率的量化比例因子Kde={Kde}"); this.WriteLine($"输出的量化比例因子Ku_p={Ku_p}"); this.WriteLine($"输出的量化比例因子Ku_i={Ku_i}"); this.WriteLine($"输出的量化比例因子Ku_d={Ku_d}"); this.WriteLine($"设定目标target={target}"); this.WriteLine($"误差e={e}"); this.WriteLine($"Kp={Kp}"); this.WriteLine($"Ki={Ki}"); this.WriteLine($"Kd={Kd}"); WriteEnd(); } public void Write(object str) { Console.Write(str); } public void WriteLine(object str) { Console.WriteLine(str); } public void WriteEnd() { Console.Write("rn"); } public static void test() { int NB = -3; int NM = -2; int NS = -1; int ZO = 0; int PS = 1; int PM = 2; int PB = 3; double target = 300; double actual = 400; double u = 0; int[,] deltaKpMatrix = new int[7, 7] {{PB,PB,PM,PM,PS,ZO,ZO }, {PB,PB,PM,PS,PS,ZO,NS }, {PM,PM,PM,PS,ZO,NS,NS}, {PM,PM,PS,ZO,NS,NM,NM}, {PS,PS,ZO,NS,NS,NM,NM}, {PS,ZO,NS,NM,NM,NM,NB}, {ZO,ZO,NM,NM,NM,NB,NB}}; int[,] deltaKiMatrix = new int[7, 7]{{NB,NB,NM,NM,NS,ZO,ZO}, {NB,NB,NM,NS,NS,ZO,ZO}, {NB,NM,NS,NS,ZO,PS,PS}, {NM,NM,NS,ZO,PS,PM,PM}, {NM,NS,ZO,PS,PS,PM,PB}, {ZO,ZO,PS,PS,PM,PB,PB}, {ZO,ZO,PS,PM,PM,PB,PB}}; int[,] deltaKdMatrix = new int[7, 7]{{PS,NS,NB,NB,NB,NM,PS}, {PS,NS,NB,NM,NM,NS,ZO}, {ZO,NS,NM,NM,NS,NS,ZO}, {ZO,NS,NS,NS,NS,NS,ZO}, {ZO,ZO,ZO,ZO,ZO,ZO,ZO}, {PB,NS,PS,PS,PS,PS,PB}, {PB,PM,PM,PM,PS,PS,PB}}; double[] e_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; double[] de_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; double[] Kp_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; double[] Ki_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; double[] Kd_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 }; var fuzzypid = new FuzzyPID(1500, 1000, 0.3, 0.9, 0.6, 0.01, 0.04, 0.01); fuzzypid.setMf("trimf", e_mf_paras, "trimf", de_mf_paras, "trimf", Kp_mf_paras, "trimf", Ki_mf_paras, "trimf", Kd_mf_paras); fuzzypid.setRuleMatrix(deltaKpMatrix, deltaKiMatrix, deltaKdMatrix); for (int i = 0; i < 50; i++) { u = fuzzypid.realize(target, actual); actual += u; Console.WriteLine($"{i} {target} {u} {actual}"); //if (i>19) //{ // target = 300; //} } //fuzzypid.showInfo(); } } }

以上就是c# 实现模糊PID控制算法的详细内容,更多关于c# 模糊PID控制算法的资料请关注靠谱客其它相关文章!

最后

以上就是搞怪煎蛋最近收集整理的关于c# 实现模糊PID控制算法的全部内容,更多相关c#内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(131)

评论列表共有 0 条评论

立即
投稿
返回
顶部