我是靠谱客的博主 聪慧时光,最近开发中收集的这篇文章主要介绍Python数据结构与算法之二叉树结构定义与遍历方法详解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

本文实例讲述了Python数据结构与算法之二叉树结构定义与遍历方法。分享给大家供大家参考,具体如下:

先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置

层序遍历  采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点

# 先序遍历
# 访问结点,遍历左子树,如果左子树为空,则遍历右子树,
# 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程
preorder(t):
  if t:
    print t.value
    preorder t.L
    preorder t.R
# 中序遍历
# 从根开始,一直走向左下方,直到无结点可以走则停下,访问该节点
# 然后走向右下方到结点,继续走向左下方:如果结点无右孩子,则向上走回父亲结点
inorder(t):
  inorder(t.L)
  print t.value
  inorder(t.R)
# 后序遍历
inorder(t):
  inorder(t.L)
  inorder(t.R)
  print t.value
# 二叉树结点类型
class BTNode:
  def __init__(self,value,lft=None,rgt=None):
    self.value = value
    self.lft = lft     # 结点左分支 BTNode
    self.rgt = rgt     # 结点右分支 BTNode

为了方便起见,定义一些打印操作

class BinTree():
  def __init__(self):
    self.root = None  # 创建一个空的二叉树
  def isEmpty(self):   # 判断二叉树是否为空
    if self.root is None: return True
    else: return False
  def makeBT(self,bt,L=None,R=None):    # 从当前结点创建二叉树
    bt.lft = L
    bt.rgt = R
  def returnBTdict(self):       # 返回二叉树的字典模式
    if self.isEmpty(): 
      return None
    def rec(bt=None,R=True):
      if R==True:
        bt = self.root
        return {'root':{'value':bt.value,"L":rec(bt.lft,False),
                        "R":rec(bt.rgt,False)} }
      else:
        if bt==None:
          return None
        else:
          return {"value":bt.value,
              "L":rec(bt.lft,False) if bt.lft != None else None,
              "R":rec(bt.rgt,False) if bt.rgt != None else None}
      return None
    return rec()
  def __repr__(self):       # 将二叉树结构打印为字典结构
    return str(self.returnBTdict())

下面是各种遍历方法,添加到树的类中

def printT_VLR(self,bt=None,rec_count = 0):   # 输出二叉树结构(先序遍历)
    # rec_count 用于计算递归深度 以便输出最后的换行符
    """
    # 先序遍历
    # 访问结点,遍历左子树,如果左子树为空,则遍历右子树,
    # 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程
    preorder(t):
      if t:
        print t.value
        preorder t.L
        preorder t.R
    """
    if bt==None: 
      bt = self.root
      print bt.value,
    btL, btR = bt.lft, bt.rgt
    if btL != None:
      print btL.value,;  rec_count += 1;   self.printT_VLR(btL,rec_count);   rec_count -= 1
    if btR != None:
      print btR.value,;  rec_count += 1;   self.printT_VLR(btR,rec_count);   rec_count -= 1
    if rec_count == 0:
      print "\n"
def printT_LVR(self,bt=None):
    """
    # 中序遍历
    # 从根开始,一直走向左下方,直到无结点可以走则停下,访问该节点
    # 然后走向右下方到结点,继续走向左下方:如果结点无右孩子,则向上走回父亲结点
    inorder(t):
      inorder(t.L)
      print t.value
      inorder(t.R)
    """
    if bt==None:
      bt = self.root
    btL, btR = bt.lft, bt.rgt
    if btL != None:
      self.printT_LVR(btL)
    print bt.value,
    if btR != None:
      self.printT_LVR(btR)
def printT_LRV(self,bt=None):
    """
    # 后序遍历
    inorder(t):
      inorder(t.L)
      inorder(t.R)
      print t.value
    """
    if bt==None:
      bt = self.root
    btL, btR = bt.lft, bt.rgt
    if btL != None:
      self.printT_LRV(btL)
    if btR != None:
      self.printT_LRV(btR)
    print bt.value,
def printT_levelorder(self):
    """
    层序遍历 采用队列的遍历操作
    第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层
    自左向右一一访问同层的结点
    """
    btdict = self.returnBTdict()
    q = []
    q.append(btdict['root'])
    while q:
      tn = q.pop(0)  # 从队列中弹出一个结点(也是一个字典)
      print tn["value"],
      if tn["L"]!=None:
        q.append(tn["L"])
      if tn["R"]!=None:
        q.append(tn["R"])

测试打印效果

def test():
  bt = BinTree()
#   btns = [BTNode(v) for v in "+*E*D/CAB"]   # 层序输入
#   bt.root = btns[0]
#   bt.makeBT(btns[0], L=btns[1], R=btns[2])
#   bt.makeBT(btns[1], L=btns[3], R=btns[4])
#   bt.makeBT(btns[3], L=btns[5], R=btns[6])
#   bt.makeBT(btns[5], L=btns[7], R=btns[8])
  btns = [BTNode(v) for v in [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
  bt.root = btns[0]
  bt.makeBT(btns[0], L=btns[1], R=btns[2])
  bt.makeBT(btns[1], L=btns[3], R=btns[4])
  bt.makeBT(btns[2], L=btns[5], R=btns[6])
  bt.makeBT(btns[3], L=btns[7], R=btns[8])
  bt.makeBT(btns[4], L=btns[9], R=btns[10])
  bt.makeBT(btns[5], L=btns[11], R=btns[12])
  bt.makeBT(btns[6], L=btns[13], R=btns[14])

输出:

复制代码 代码如下:
{'root': {'R': {'R': {'R': {'R': None, 'L': None, 'value': 15}, 'L': {'R': None, 'L': None, 'value': 14}, 'value': 7}, 'L': {'R': {'R': None, 'L': None, 'value': 13}, 'L': {'R': None, 'L': None, 'value': 12}, 'value': 6}, 'value': 3}, 'L': {'R': {'R': {'R': None, 'L': None, 'value': 11}, 'L': {'R': None, 'L': None, 'value': 10}, 'value': 5}, 'L': {'R': {'R': None, 'L': None, 'value': 9}, 'L': {'R': None, 'L': None, 'value': 8}, 'value': 4}, 'value': 2}, 'value': 1}}

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

最后

以上就是聪慧时光为你收集整理的Python数据结构与算法之二叉树结构定义与遍历方法详解的全部内容,希望文章能够帮你解决Python数据结构与算法之二叉树结构定义与遍历方法详解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(118)

评论列表共有 0 条评论

立即
投稿
返回
顶部